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Abstract—Due to application limitations there is a gap between
academic research and industry in the field of computer vision.
Normally, the best academic results are in well controlled envi-
ronments and this is not different for person re-identification.
This brings an urge to develop more generalized systems
or robust domain adaptation techniques to allow person re-
identification applications in real world. In this work, we
present a set of tools to enhance a model performance in
the target domain without the need to annotate any new
data. We show the efficiency of our techniques in the Visual
Domain Adaptation challenge released by ECCV 2020, where
we increase the baseline mAP performance from 21.97% to
59.50%.

1. Introduction

Person re-identification (reID) is an image retrieval task,
where the objective is to match images from the same
person in different non-overlapping cameras views. It is an
indispensable task for intelligent video surveillance [1] and
smart cities [2].

At 2019 CVPR, Luo et al. [3] presented a person reID
baseline achieving 94.5% rank-1 accuracy in Market1501
[4] and 86.4% rank-1 accuracy in DukeMTMC-reID [5].
Their work evidence the high standard for supervised person
reID.

Despite the high performance obtained by supervised
person reID methods, real-world tasks demand algorithms
that can perform in a variety of domains (datasets). We
attempt to narrow this industry-academy gap using domain
adaptation and enhance a baseline algorithm to perform well
in other domains.

Domain adaptation for person reID is a trending topic at
the moment. In 2020 a Visual Domain Adaptation (VisDA)
challenge was launched, the objective was to test person
reID methods ability to transfer knowledge from a source
domain to novel target domains. They released a source
dataset (personX [6]), a SPGAN [7] translated dataset and
an unlabeled target training dataset.

Our main contributions with this work are:

• We present an unsupervised domain adaptation
framework that achieved competitive results in

VisDA 2020 challenge (top 20 in the validation
dataset);

• We compare two different clustering algorithms for
pseudo-labels generation;

• We propose a feature normalization method to de-
crease the camera bias in target domain;

• We present a set of post processing tools to enhance
our final model results.

2. Related works

One of the approaches for domain adaptation relies on
pseudo-labels generation at target domain. For classification
tasks, pseudo-labels generation is direct, once you assume
the algorithm is correct and label the input using its pre-
diction. Typically, person reID is approached as a metric
learning task and the model prediction is not a label, so
we use clustering algorithms and define each cluster as a
pseudo-label (or person ID).

K-means [8] is a classical clustering algorithm and has
been used several times for person reID pseudo-labels gen-
eration. It was used by Hehe et al. [9] with one variation,
they disregard samples far from centroids in attempt to avoid
outliers. Also, they proposed an unsupervised progressive
learning method, where they repeated the process of gener-
ating pseudo-labels and fine-tuning their CNN until it does
not converges anymore.

In [10] we also used k-means for pseudo-labels genera-
tion. But we realized that the clusters were mainly formed
by images from a single view. This could harm the learning
process, once it is important for the CNN to learn camera-
camera translation. Therefore, we proposed to use k-means
for each camera and then use K nearest neighbors (KNN)
to merge clusters from different cameras.

Zeng et al. [11] believe that k-means can not handle
the outliers, because these points drag the centroids far
from interesting regions. Then, they proposed a minimal
spanning tree based clustering method where each image
would be its own cluster, which is then merged with the
nearest cluster at each iteration. In addition, they used a
PK sampling technique, where their pseudo labeled dataset
would consider only clusters with at least K samples.



3. Methodology

3.1. Datasets

VisDA challenge organizers released three training
datasets and one validation dataset, their statistics are pre-
sented in table 1. PersonX dataset is used as source domain
to train a baseline model. PersonX SPGAN is a translated
dataset that take advantage from PersonX labels and looks
similar to target domain. The target domain consisted in
13198 unlabeled images for training and 3977 labeled im-
ages for validation.

TABLE 1. DATASETS STATISTICS FOR VISDA 2020 CHALLENGE

Dataset No Images Labeled
PersonX 20280 3

PersonX SPGAN 20280 3
Target Training 13198 7

Target Validation 3977 3

3.2. Baseline

For our baseline we used ResNet50-IBN [12] as back-
bone and trained on the PersonX dataset with an approach
similar to Luo et al.’s [3].

We initialized the ResNet50-IBN with weights pre-
trained on ImageNet and changed the last fully connected
layer to output an N dimensional feature, where N is the
number of identities in the dataset.

We used PK sampling to create the training batchs,
where we choose 16 identities (P) and 4 images (K) from
each identity. Then, our batch size is 4× 16 = 64.

Our data augmentation procedure included resizing the
image into 256 × 128 pixels (original size was 128 × 64
pixels), padding each dimension with 10 zero valued pixels
and randomly cropping it with size 256 × 128. Also, we
flipped the image horizontally and random erased [13] it
with a 0.5 probability each.

During training, our model outputs a features vector f
with 2048 dimensions and an ID prediction logits p. We
used the features vector in a batch hard triplet loss(Ltri)
[14] with 0.3 margin and in center loss (Lcent) [15]. The
perdiction logits were used in a cross entropy label smooth
loss(LID) [16]. Our loss function was given by Equation 1.

L = Ltri + LID + 0.005Lcent (1)

Finally, we used Adam optimizer for 40 epochs and a
learning rate schedule to avoid overfitting. Our learning rate
started in 10−5 and linearly increased to 10−4 in the first 10
epochs, then we multiplied the learning rate by a 0.1 factor
in epochs 15 and 25. After training in personX dataset we
fine tuned our model in personX SPGAN following the same
training configurations.

3.3. Pseudo labels

After training our baseline method, we used clustering
algorithms to generate pseudo-labels in target training data.
Then, we fine tuned our model in this dataset and evaluated
it in target validation data. We did these recursively (pro-
gressive learning) while the Mean Average Precision (mAP)
in target validation dataset kept increasing.

3.3.1. K-means. The use of triplet loss for training ensures
that the features vector f is part of an Euclidean vector space.
Then, we can use k-means to group features from different
images and generate pseudo-labels.

As we stated in [10], when working in a new domain
there is a camera domain shift, so features from the same
camera tend to be nearer than features from different cam-
eras. It is fundamental to overcome it because having images
from different views is crucial at the learning stage.

Therefore, we used our strategy [10] to generate identi-
ties with examples from different views. Their strategy was
to use k-means for each camera view and then use KNN
to group clusters from different cameras. In our case, we
choose k = 500 and have 5 different views, so we applied
k-means for each camera and generated 5 × 500 = 2500
clusters. Then, we grouped the inter camera clusters to
generate the final 500 clusters with images from all the 5
cameras views.

3.3.2. Minimal spanning tree clustering. For the minimal
spanning tree clustering, we followed the method presented
by Zeng et al. [11]. Their method set each image as a clus-
ter and calculate all inter cluster distances using UPGMA
(unweighted pairgroup method with arithmetic means) [17].

Then, they merge a percentage (mp) of the nearest
clusters (we used mp = 7%) and repeat this process for
s steps (we used s = 14). Finally, they use PK sampling
(select K images from P identities to form the training batch)
to generate the pseudo labeled dataset, so only clusters with
at least 4 images are inserted in the dataset.

3.4. Post processing

We used some post processing techniques to enhance
our results on the target domain. The three techniques
that we used were model ensemble, re-rank and camera
normalization.

The model ensemble technique was used to take ad-
vantage from both k-means and minimal spanning tree
clustering. For this technique, we did a weighted sum with
the distance matrix generated by each method and used a
grid search to find the best weight. Then, our final distance
matrix M was given by Eq. 2.

M = αMk−means + (1− α)Mhierarchical (2)

As said before, the features space suffer from a camera
domain shift, then Zhuang et al. [18] proposed to adapt batch
normalization layers, so it normalize features from each



specific camera view. With that in mind, we normalized the
features from the target validation for each camera before
calculating the distance matrix M. Also, we used the re-
ranking approach proposed by Zhong et al. [19].

4. Experiments

TABLE 2. RESULTS (IN %) FOR ALL THE IMPLEMENTED METHODS. RR
MEANS RE-RANKING AND CN IS CAMERA NORMALIZATION.

CMC Scores
Method mAP Rank-1 Rank-5 Rank-10

Baseline 21.97 40.32 62.33 69.50
Baseline + SPGAN 26.49 46.95 61.80 69.50
Minimal Spanning Tree 35.28 57.82 76.66 81.96
K-Means 37.05 59.95 74.80 81.17
Ensemble 39.48 60.74 76.92 84.88
Ensemble + RR 53.23 64.99 78.51 83.02
Ensemble + RR + CN 59.50 70.29 81.43 85.68

The weakness of the baseline result highlights the do-
main shift between source and target datasets. Our baseline
model, trained on the PerxonX dataset, achieved a mAP of
21.97% in the target domain as shown in Table 2.

The PersonX SPGAN used a CycleGAN to translate
images from source domain to target domain. The translation
reduces the shift between source and target domains, while
taking advantage from source domain labels. When fine tun-
ing our baseline at PersonX SPGAN dataset, we increased
the mAP in 4.52% and the CMC rank-1 in 6.63%. This is an
expected result once the images are more similar to target
domain.

Although PersonX SPGAN translates source images to
appear target images, training with actual target domain
images is even better. Then, we used k-means and minimal
spanning tree to generate pseudo-labels on target training
images and fine-tuned our model in this pseudo labeled
dataset. As one can see in Table 2, the minimal spanning
tree clustering technique increased the mAP in 8.79% and
the k-means increased it in more than 10%, when comparing
to our baseline SPGAN model.

For both pseudo labels methods we used the concept
of Progressive Learning, in Figure 1 we show how these
methods progressed through each step.

The minimal spanning tree based clustering is designed
to disregard outliers, but it was too conservative. It continues
converging for 8 steps and even in the last iteration only
4852 from the 13198 images were considered in the pseudo
labels. Using just 36.76% of the available target domain data
was the reason this method achieved worse results than k-
means, maybe a tweak in the parameters of the method could
result in better results and faster converging.

The k-means method used don not deal with outliers, so
it already uses all images available in the first step. Using all
the images is a strong factor for the method quick increase
in performance, but it also does not enable progressive
learning.

Each clustering technique has its own characteristics,
so are the pseudo labels generated by them. Then, it is
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Figure 1. The mAP achieved at each step while using K-Means and
Minimal Spanning Tree pseudo-labels methods. The numbers in the graph
are the percentage of total available images each method have selected.

expected that models trained learn different ways to classify
the data. With that in mind, we ensemble the k-means and
the minimal spanning tree models and achieved an even
better performance. The result presented was achieved with
α = 0.76.

As person re-identification is a image retrieval task, re-
ranking is critical to improve its accuracy. In re-rank process
the similarity relationship from similar samples are captured
and k-reciprocal features are considered to match an image,
then a more robust matching system is created. The result
in Table 2 indicates how essential is the re-ranking with
an mAP increase of 13.75% compared with the ensemble
method alone.

The biggest challenge in person re-identification is how
to encode the person information while leaving camera
information out. By normalizing the features by camera we
reduce the camera information in the encoding and enhance
the model performance. The 6.27% increase in mAP and
5.30% increase in CMC Rank-1 proves that reducing the
camera information in the encoding is key to achieve great
results in person re-identification.

5. Conclusion

In this work, we show how different person reID datasets
can be and how it impact the model performance. Also,
we presented some tools to gradually enhance the model
performance in the new domain without the burden of
annotating it.

Camera domain shift is proven to be a major obstacle
to a robust person re-identification model. Therefore, it is
interesting to see how camera-based feature normalization
enhances the performance on new domains.

Pseudo-labels generation was the base of our domain
adaptation techniques and two totally different clustering
algorithms were tested. Both methods significantly increased



our results, even more when ensemble. So we can assume
each one had its own characteristics and complete each
other. This is very useful, because this kind of approach may
be used in real world to keep improving models performance
and adapting itself to new situations with minimal human
intervention.
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