Overview	Objective	Related Work	Proposed Method	Experimental Results	Conclusions
0	0	000	000	0000	0

Domain Adaptation for Person Re-identification on New Unlabeled Data

Tiago de C. G. Pereira and Teo de Campos

Universidade de Brasília

February 28, 2020

The authors would like to thanks:

- FAPDF (fap.df.gov.br)
- CNPq grant PQ 314154/2018-3 (cnpq.br)
 ofilo de Campos UnB Domain Ad

Domain Adaptation for Person Re-identification on New Unlabeled Data

February 28, 2020

Overview	Objective	Related Work	Proposed Method	Experimental Results	Conclusions
0	0	000	000	0000	0
Sched	ule				

- 1. Overview
- 2. Objective
- 3. Related Work
- 4. Proposed Method
 - Direct Transfer
 - CycleGAN
 - Pseudo labels
- 5. Experimental Results
 - CycleGAN
 - Pseudo labels
- 6. Conclusions and Future Works

The purpose of person re-identification is to match images of persons in nonoverlapping cameras views.

person re-identification, each In dataset or network of cameras is a domain.

Figure 1: Example from Market 1501 [1] dataset

[1] Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., and Tian, Q. Scalable person re-identification: Abenchmark. In: ICCV 2015.

Overview	Objective	Related Work	Proposed Method	Experimental Results	Conclusions
0		000	000	0000	0
Object	tive				

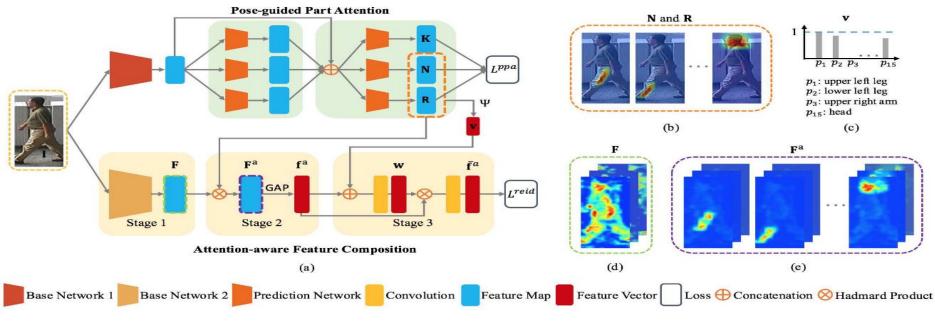
Our objective is to improve person reidentification performance on new datasets without the need of labeling it.

Overview	Objective	Related Work	Proposed Method	Experimental Results	Conclusions
0	0	$\bigcirc \bigcirc \bigcirc$	000	0000	0
Related	Work				

The state-of-art on person re-identification uses either:

- Attention-based neural networks [2]
- Factorization neural networks [3]
- Body parts detection [4]

UnB



[2] Liu, X., Zhao, H., Tian, M., Sheng, L., Shao, J., Yi, S., Yan, J. and Wang, X. Hydraplus-net: Attentive deep features for pedestrian analysis. In: ICCV 2017.
 [3] Chang, X., Hospedales, T. M., and Xiang, T. Multilevel factorization net for person re-identification. In: CVPR 2018.
 [4] Zhao, H., Tian, M., Sun, S., Shao, J., Yan, J., Yi, S., Wang, X., and Tang, X. Spindle net: Person reidentification with human body region guided feature decomposition and fusion. In: CVPR 2017.

Tiago Pereira and Teofilo de Campos

Domain Adaptation for Person Re-identification on New Unlabeled Data

Overview	Objective	Related Work	Proposed Method	Experimental Results	Conclusions
0	0	$\bigcirc \bigcirc \bigcirc$	000	0000	0
Related	d Work				

The person re-identification challenge can be approached as:

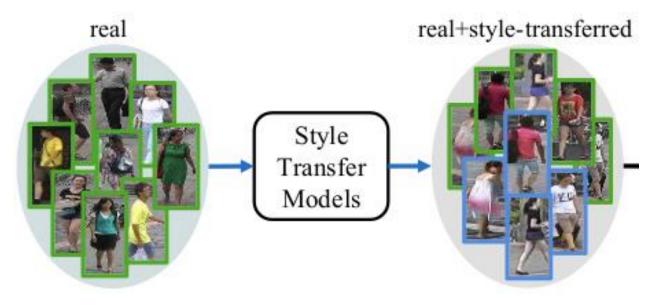
- metric learning task [4][5]
- classification task [2][3]

[5] Deng, W., Zheng, L., Ye, Q., Kang, G., Yang, Y., and Jiao, J. Image-image domain adaptation with preserved self-similarity and domain-dissimilarity for person re-identification. In: CVPR 2018.

Overview	Objective	Related Work	Proposed Method	Experimental Results	Conclusions
0	0	000	000	0000	0
Relate	d Work				

Domain adaptation techniques for person re-identification:

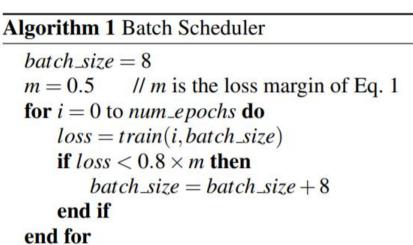
- Direct transfer [4]
- Camera style adaptation [6]
- Domain guided dropout [7]

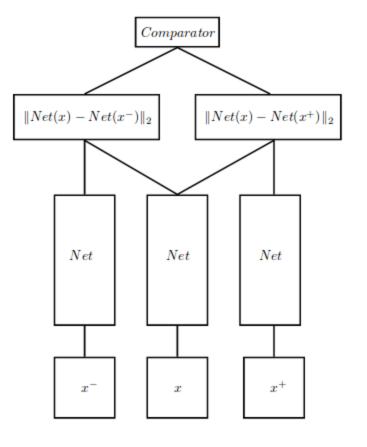


[6] Zhong, Z., Zheng, L., Zheng, Z., Li, S., and Yang, Y. Camera style adaptation for person reidentification. In: CVPR 2018. [7] Xiao, T., Li, H., Ouyang, W., and Wang, X. Learning deep feature representations with domain guided dropout for person re-identification. In: CVPR 2016.

Our baseline method had the following configurations:

- ResNet-50
- Pre-trained on ImageNet
- Triplet loss with batch hard [8]
- Adam optimizer
- Batch scheduler

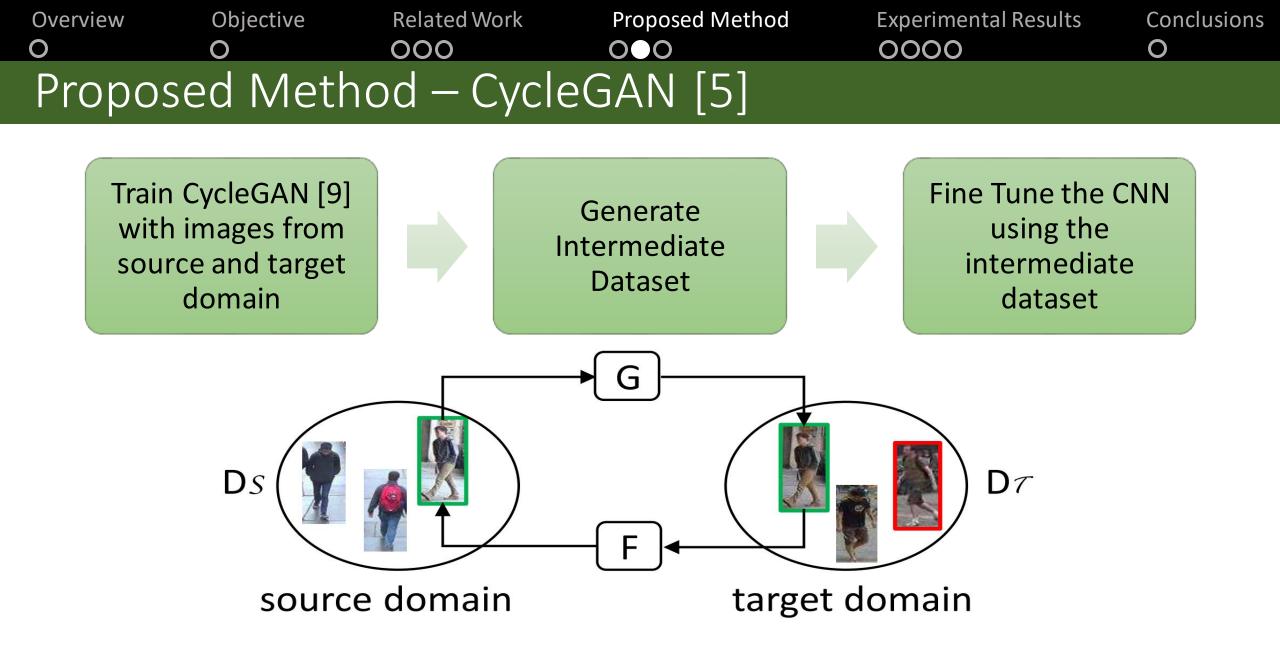




[8] Hermans, A., Beyer, L., and Leibe, B. In defense of the triplet loss for person re-identification. arXiv 2017.

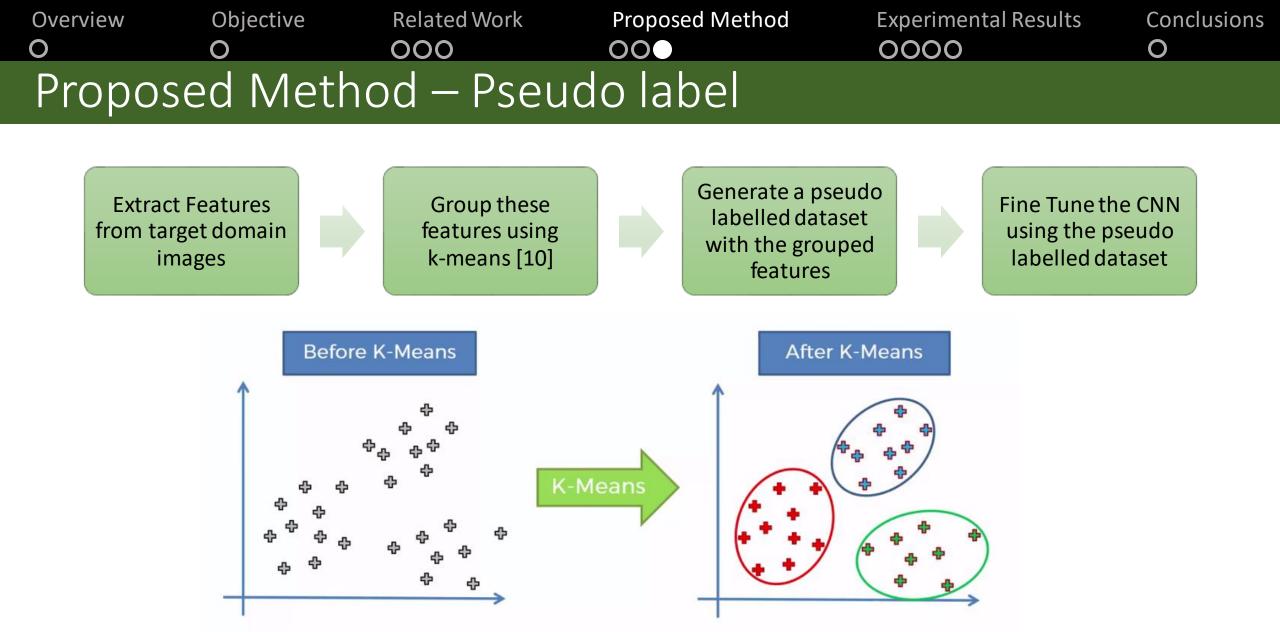
UnB

8/16



[5] Deng, W., Zheng, L., Ye, Q., Kang, G., Yang, Y., and Jiao, J. Image-image domain adaptation with preserved self-similarity and domain-dissimilarity for person re-identification. In: CVPR 2018.
 [9] Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. Unpaired image-to-image translation using cycle consistent adversarial networks. In: ICCV 2017.

9/16



[10] Hartigan, J. A. and Wong, M. A. A K-means clustering algorithm. In: Journal of the Royal Statistical Society 1979.

Overview O	Objec O	tive Related OOO		oposed Method OO	Experimental	Results	Conclusions O
Expe	eriment	tal Results	s - Cycle	GAN			
	CUHK03	Market1501	Viper	Market1501	CUHK03	Viper	
		\rightarrow		\rightarrow		\rightarrow	
	✓		÷		€		

UnB

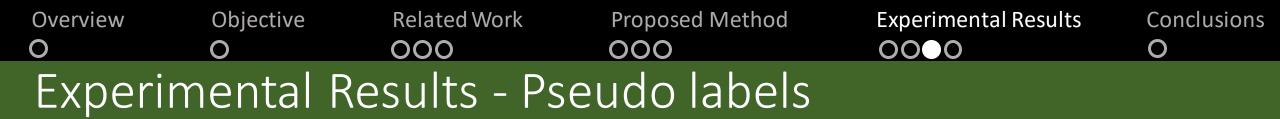
Overview	Objective	Related Work	Proposed Method	Experimental Results	Conclusions
0	0	000	000	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$	0
Fxneri	mental R	Results - Cv	vcleGAN		

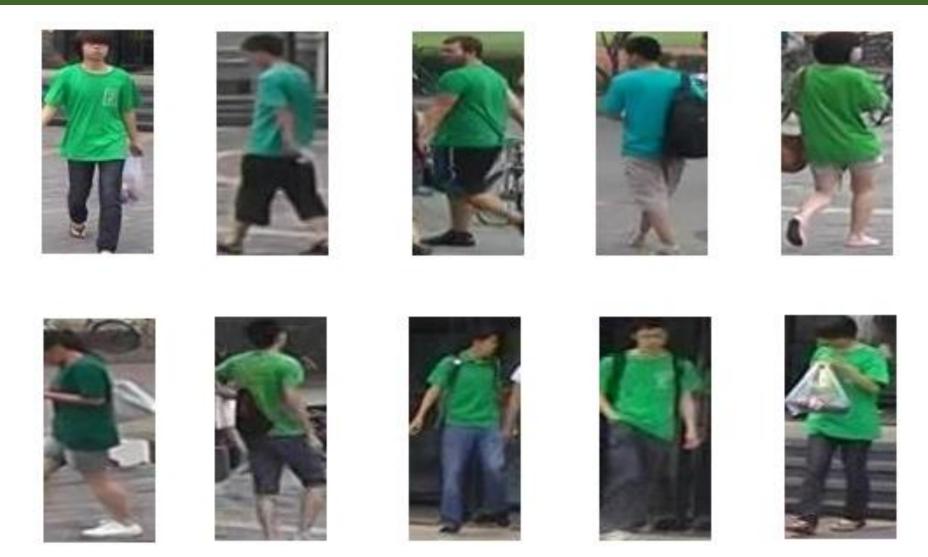
			A	ccuracy (CMC score	es)
Target Domain	Source Domain	Method	Rank – 1	Rank - 5	Rank - 10
	Vipor	Direct Transfer	5.7%	15.5%	22.2%
Market 1501	Viper	CycleGAN	6.7%	17.0%	23.7%
IVIAI KET 1501	СИНК 03	Direct Transfer	26.8%	45.9%	55.1%
	CORK 05	CycleGAN	35.8%	56.5%	65.7%
	Vipor	Direct Transfer	5.9%	18.1%	29.0%
СИНК 03	Viper	CycleGAN	31.9%	64.4%	77.5%
	Market 1501	Direct Transfer	19.9%	49.4%	63.2%
		CycleGAN	34.8%	66.7%	79.1%
		Direct Transfer	10.1%	22.5%	29.0%
	СUНК 03	CycleGAN	11.6%	25.5%	34.7%
Viper		Direct Transfer	12.5%	25.0%	33.1%
	Market 1501	CycleGAN	9.8%	26.9%	36.4%

Tiago Pereira and Teofilo de Campos

UnB

Domain Adaptation for Person Re-identification on New Unlabeled Data





UnB

Overview	Objective	Related Work	Proposed Method	Experimental Results	Conclusions
0	0	000	000	000	0
Experi	mental R	lesults - Ps	eudo labels		

			А	ccuracy (CMC scores)	
Target Domain	Source Domain	Method	Rank – 1	Rank - 5	Rank - 10
		Direct Transfer	5.7%	15.5%	22.2%
	Viper	CycleGAN	6.7%	17.0%	23.7%
Market 1501		Ours	8.6%	20.5%	28.4%
		Direct Transfer	26.8%	45.9%	55.1%
	CUHK 03	CycleGAN	35.8%	56.5%	65.7%
		Ours	37.3%	60.4%	70.4%
		Direct Transfer	5.9%	18.1%	29.0%
	Viper	CycleGAN	31.9%	64.4%	77.5%
CUHK 03		Ours	36.1%	69.2%	81.3%
CORKUS		Direct Transfer	19.9%	49.4%	63.2%
	Market 1501	CycleGAN	34.8%	66.7%	79.1%
		Ours	38.2%	69.7%	81.6%
		Direct Transfer	10.1%	22.5%	29.0%
	CUHK 03	CycleGAN	11.6%	25.5%	34.7%
Vinor		Ours	13.6%	33.9%	46.0%
Viper		Direct Transfer	12.5%	25.0%	33.1%
	Market 1501	CycleGAN	9.8%	26.9%	36.4%
		Ours	13.9%	29.0%	40.7%
ereira and Teofilo de Campos	UnB Domai	n Adaptation for Person Re-ide	ntification on New Unlabeled D	Pata Febru	ary 28, 2020

Overview Objective Related Work Proposed Method Experimental Results Conclusions O 0 000 000 000 000 000 000 Conclusions and Future Works Future Works Conclusions Conclusions Conclusions Conclusions

Conclusions:

- 1. Pseudo-labels lead to a significant boost in the performance
- 2. Batch scheduler plays a crucial role in triplet loss training in noisy datasets
- 3. The presented domain adaptation workflow is a great jump start for the deployment of person re-ID software in real applications

Future works:

- 1. Re-apply the pseudo-labels method in an iterative manner
- 2. Experiment other clustering algorithms to generate pseudolabels

Overview	Objective	Related Work	Proposed Method	Experimental Results	Conclusions
0	0	000	000	0000	0

Thank You!