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Abstract

Semantic scene completion is the task of producing a
complete 3D voxel representation of volumetric occupancy
with semantic labels for a scene from a single-view observa-
tion. We built upon the recent work of Song et al. [13], who
proposed SSCnet, a method that performs scene completion
and semantic labelling in a single end-to-end 3D convolu-
tional network. SSCnet uses only depth maps as input, even
though depth maps are usually obtained from devices that
also capture colour information, such as RGBD sensors and
stereo cameras. In this work, we investigate the potential of
the RGB colour channels to improve SSCnet.

1. Introduction
The task of reasoning about scenes in 3D is one of the

seminal goals of Computer Vision [8]. If the 3D geom-
etry of a scene is known, robots are able to plan trajec-
tories, avoid collisions or clean surfaces. If the semantic
labels of each surface or voxel is also known a robot can
also figure interact with the environment and perform more
complex tasks, such as moving objects from one location to
another; opening/closing doors, drawers, windows; operat-
ing kitchen appliances etc. Three-dimensional maps with
labelled voxels have several other applications, including
surveillance, assistive computing, augmented reality and so
on. One issue is that capturing the full geometry of a scene
can be time consuming (if it is done using a scanning tech-
nique [9]) or expensive (if it is done using a rig of calibrated
sensors).

It is well known that vision is a combination of so called
bottom-up and top-down processes [8]. Bottom-up infor-
mation can be obtained by matching local features for stere-
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opsis and top-down is the use of prior knowledge from re-
lated scenes and objects. If both types of cues are combined,
it is possible to estimate a complete scene geometry by us-
ing a single visual and depth map of a scene. This is well
illustrated in Figure 2 of [13]. A visual sensor captures a
single view of a scene which provides measurements (e.g.
RGB and Depth) of the visible objects but it is not possible
to measure the geometry of occluded regions. However, if
the class of the objects is identified, it is possible to infer the
complete scene geometry, enabling a full 3D representation
to be proposed.

Solid computational demonstrations of this have started
to be published recently. Notably, Song et al. [13] intro-
duced the problem of Semantic Scene Completion (SSC),
i.e., given an depth map, the goal is to generate a 3D im-
age where each voxel is associated to one out of N + 1 la-
bels, where there are N known object labels plus an ‘empty
space’ label.

In [13], this problem is approached using a Deep 3D
Convolutional Neural Network coined SSCNet. That pa-
per demonstrates impressive results on completing and la-
belling a full 3D scene generated from a single depth map.
Using a combination of bottom-up dues (from the depth
sensor) and top-down cues (learnt from the training set),
their method is able to infer the geometry and labels of the
whole scene, including heavily occluded regions, such as
the regions under tables and behind sofas, as illustrated in
Figure 1 of [13].

However, one of the main limitations of SSCNet is that
it was not designed to use any colour information, only
depth maps are used. This clearly impairs the method as
indoor scenes generally include various sources of error in
depth and geometry estimation. Highly reflective scenes
with glass, mirrors or shiny surfaces usually induce false
depth. If depth is captured using stereo cameras, texture-
less and non-Lambertian surfaces often result in errors in
feature detection and matching. Colour information also
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disambiguates between different objects that have similar
shape or that are co-planar, like posters on the wall. Fur-
thermore, it is clear that colour offers crucial information
for semantic labelling that strongly complement depth in-
formation, as seen in papers that focus on semantic segmen-
tation from RGBD images, e.g. [11, 12, 7, 4, 14, 1, 2].

In this paper, we propose to use colour in addition to
depth for Semantic Scene Completion. For that, we propose
modifications of the SSCnet architecture in order to fuse
RGB and depth. A new input layer was proposed to encode
colour in the visible frustum and we combined a feature ex-
traction training technique for multiple view learning.

2. Colour SSCNet
Depth maps are acquired using an RGB-D sensor and us-

ing the sensor’s intrinsic calibration parameters, a 3D point
cloud is generated. The observed geometry is then encoded
using flipped Truncated Signed Distance Function (fTSDF),
proposed in [13]. This method associates a value to each
point in the 3D space to a function of its distance to the
nearest surface point. The sign of this value indicates if it is
visible or occluded. Apart from the occlusion coding, this
method is viewpoint independent.

The fTSDF encoding of voxels describe the geometry of
the space, but it does not carry any information about the
colour or grey level of the visible objects. We propose to
encode the RGB values of the visible surfaces in another
voxel representation of the scene. The three channels are
normalised to range from 0 to 1. Empty spaces and oc-
cluded regions are coded with the -1 value for the three
colour channels.

We apply these two encoding techniques to RGB and
Depth signals and run them through a 3D CNN that learns
to map from RGBD to a labelled 3D volume. Labelled
volumes were obtained as described in [13], i.e., the bin-
vox voxelisation technique [10] was applied to 3D models,
which accounts for both surface and interior voxels using a
space carving approach.

We built upon the 3D CNN architecture of SSCNet [13].
To combine RGB and Depth, we propose the two fusion
schemes described below.

Early fusion. The first layer of SSCNet was adapted so
that it takes as input a concatenation of fTSDF and the three
colour channels encoded as described above. The remaining
of the network is the same.

Mid-level fusion. This architecture is depicted in Fig-
ure 1, drawn using Caffe [6] (better viewed on a screen).
The numbers in brackets are: kernel size, stride, pad and
dilation factor, respectively. The branch on the left is essen-
tially a copy of SSCNet. A colour 3D CNN was built fol-
lowing a similar architecture to SSCNet up to the concate-
nation layer. This layer originally aggregated the output of
five scales gathered from previous layers and it is followed
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Figure 1. Network architecture for mid-level fusion.



by three 3D convolutional layers. Although this network
does not have any fully connected (FC) layer, the last three
layers perform the same class as FC layers in classification
CNNs, as they are closer to the output, which produces la-
belled data. A typical mid-level fusion using CNNs is done
at the input of the first FC layer. Therefore, we believe the
most appropriated layer to fuse SSCNet-like sub-networks
is at the concatenation layer.

However, the original SSCNet is very memory-intensive
and it requires about 7GB of GPU memory to process a
single depth image1. If we were to duplicate all layers of
the network up to the concatenation layer, much more than
12GB would be required, whereas most GPU models avail-
able nowadays have up to 12GB of RAM. To add to the
challenge, our RGB coding uses three channels per image,
rather than one as in the fTSDF model, though this only af-
fects the first convolutional layer. Therefore, some of the
convolutional layers were removed from the colour branch
of SSCNet, but we have preserved all the dilated convolu-
tion layers, as this is a significant feature of SSCNet which
widely expands the receptive field of the network [15].

In addition, we also evaluated a colour-only SSCNet,
which follows the same architecture as the colour branch
of the mid-level RGB-D fusion network, but it is followed
by the top three convolutional layers, without aggregating
activations from the fTSDF branch.

3. Experiments and Training Strategies
Our evaluations focused on the NYU depth v2

dataset [12], using the standard split of 795 training sam-
ples and 654 test samples2. However, instead of the stan-
dard semantic segmentation labels, we used the labels de-
vised for scene completion, where objects are grouped into
7 categories plus window, wall, floor, ceiling and another
category that identifies free space. This set of labels origi-
nated from [5]. As explained in [13], ground truth volumes
were obtained from 3D mesh annotations of [3]. Our imple-
mentation was developed using the Caffe framework [6].

We evaluated the two architectures proposed in Sec-
tion 2: early and mid-level fusion and compared it against
the original SSCNet and colour-only. For all methods that
we proposed, training was done following these strategies:

• Random initialisation: all parameters were randomly
initialised and the whole network was trained from
scratch.

1The original implementation from the authors, obtained from https:
//github.com/shurans/sscnet, actually requires almost 12GB.
We removed some redundancy from their code, freeing about 5GB of
memory.

2We used the train+validation split for training and the test
split for testing, following the sample indices available from
https://github.com/shelhamer/fcn.berkeleyvision.
org/tree/master/data/nyud.

• Feature learning: we kept the original SSCNet pa-
rameters trained by Song et al. [13] for all the original
layers and optimised only the colour layers, i.e., the
original SSCNet parameters were frozen.

• Fine tuning: this is similar to the strategy above, ex-
cept that instead of freezing the original layers, we also
enabled their parameters to be optimised, but with the
learning rate ratio of 0.2 times the ratio of the new lay-
ers.

• Surgery: was applied only for the early fusion ap-
proach. It is similar to fine tuning, except that the
weights of the input layer which related to depth were
set to the original parameters of the first layer of SSC-
Net and the other weights (linked to the colour chan-
nels) of the same convolutional kernel were initialised
randomly.

Voxel labelling is done by applying soft-max to the
scores of the last convolutional layer of the networks and
optimisation is done using cross-entropy as a loss function,
averaged out over all classes.

The results were evaluated using the Intersection over
the Union (IoU) between predicted class labels and ground
truth, averaging out over all voxels in the test set and all
classes. We followed [13] and evaluated our results both in
terms of completion (i.e., the ability to detect if an occluded
voxel is occupied or free space) and in terms of semantic
labelling of voxels of all classes.

4. Results and Discussion
Our results so far show that none of the proposed archi-

tectures and training strategies actually lead to results that
are better than the original SSCNet based only on depth ob-
servations, i.e., through the training iterations, our results
peaked at scene completion IoU of 56.6 and average se-
mantic scene completion of 30.5, which are both results ob-
tained by the original SSCNet on the test set of the NYU
depth v2 dataset. In other words, our experiments in the
NYU depth v2 dataset (with the 12 category labels [5])
show that the proposed method for coding colour informa-
tion is not as discriminative as fTSDF, neither it comple-
ments depth information.

However, the performance of our colour-only network,
initialised with randrom weights, followed a monotonic in-
crease as the number of training iterations increased, though
it did not converge with the same number of iterations as
the architectures that use depth. Therefore, there is cer-
tainly relevant information in RGB, but it should probably
be combined with fTSDF in a different way, perhaps us-
ing late fusion. Even if early or mid-level fusion are not
the ideal strategies in this problem, further investigation is
also needed to understand why RGB has not complemented

https://github.com/shurans/sscnet
https://github.com/shurans/sscnet
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https://github.com/shelhamer/fcn.berkeleyvision.org/tree/master/data/nyud


Depth at all. It might be an artefact of the dataset and set
annotated classes, as it is possible that geometry alone is
already very discriminative. A suggestion is to verify this
using more complex scenes with more occlusions or with
finer object class labels.

Our results have also shown that unconstrained Fine
Tuning leads to a higher decrease in the loss function than
the constrained optimisation methods (Feature Learning
and Surgery). However, after 1000 iterations, the test set
performance (measured by IoU) starts to decrease due to
over-fitting. Although the loss is lower for Fine Tuning, we
did not observe a significant difference between the meth-
ods in terms of test set performance.

5. Conclusion
In this paper we reported ongoing work that considers

the problem of Semantic Scene Completion in 3D from a
single RGBD image. Starting from the 3D CNN architec-
ture of SSCNet [13], which used only depth maps as input,
we proposed to combine RGB and Depth information using
early and mid-level fusion schemes.

Our preliminary results were not better than the origi-
nal depth-only method. Therefore, further investigation is
needed in order to verify if the dataset (NYU depth v2 with
12 labels obtained from [5]) prilidedges structural informa-
tion such that depth is already very discriminative. A finer
set of labels or a more complex dataset should be evaluated.
Other directions of future work are to evaluate late fusion
scheme and investigate other ways to encode RGB infor-
mation.
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