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a b s t r a c t 

We propose a generalisation of the local feature matching framework, where keypoints are replaced by 

k -keygraphs, i.e. , isomorphic directed attributed graphs of cardinality k whose vertices are keypoints. 

Keygraphs have structural and topological properties which are discriminative and efficient to compute, 

based on graph edge length and orientation as well as vertex scale and orientation. Keypoint matching 

is performed based on descriptor similarity. Next, 2-keygraphs are calculated; as a result, the number of 

incorrect keypoint matches reduced in 75% (while the correct keypoint matches were preserved). Then, 

3-keygraphs are calculated, followed by 4-keygraphs; this yielded a significant reduction of 99% in the 

number of remaining incorrect keypoint matches. The stage that finds 2-keygraphs has a computational 

cost equal to a small fraction of the cost of the keypoint matching stage, while the stages that find 3- 

keygraphs or 4-keygraphs have a negligible cost. In the final stage, RANSAC finds object poses represented 

as affine transformations mapping images. Our experiments concern large-scale object instance recogni- 

tion subject to occlusion, background clutter and appearance changes. By using 4-keygraphs, RANSAC 

needed 1% of the iterations in comparison with 2-keygraphs or simple keypoints. As a result, using 4- 

keygraphs provided a better efficiency as well as allowed a larger number of initial keypoints matches to 

be established, which increased performance. 

© 2017 Published by Elsevier B.V. 
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. Introduction 

Many problems in computer vision involve finding correspon-

ences of robust invariant local features ( i.e. , keypoints), for both

D images and 3D point clouds generated using depth images. For

xample, object instance recognition applied to visual search, aug-

ented reality or object manipulation by robots. In such contexts,

 query image is matched against a (possibly large) set of model

mages by individually matching each query feature against the set

f model features. Such recognition strategy based on local feature

atching provides three main advantages. First, by employing in-

exing techniques, it is possible to efficiently compare the query

eatures against the model features. Second, local feature matching

s effective against problems caused by occlusions and background

lutter, leading to a good performance in “real-world” object detec-

ion. Third, it is possible to obtain geometrically precise detections,

ince fine object structures are matched. 

The extraction of local features involves two stages: detec-

ion and description. In the detection stage, keypoints present-

ng rich local information are identified. In the description stage,
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he method assigns to each keypoint local shape information ( e.g. ,

cale and orientation) as well as a descriptor representing lo-

al visual content. After keypoint extraction, the next stage finds

orrespondences between keypoints representing the same parts

n different images subject to large changes in viewpoint, scale

nd appearance. Traditionally, correspondences are established be-

ween individual keypoints based on descriptor similarity only, e.g. ,

he original SIFT approach of Lowe [21] or the method of Hsiao

t al. [15] . Other authors employed spatial information in keypoint

eighbourhoods in order to improve the overall quality of key-

oint matching. For instance, the approach of Li et al. [19] which

atches keypoint pairs or the SCRAMSAC method of Sattler et al.

29] that examines consistency in keypoint neighbourhoods. 

We propose a generalisation of the traditional keypoint frame-

ork, by replacing keypoints for keygraphs, i.e. , isomorphic directed

ttributed graphs whose vertices are keypoints, in order to ex-

lore structural and topological properties. A keygraph constitutes

 semi-local descriptor that maintains robustness to geometric de-

ormations provided by its vertex (keypoint) features. Each image

s represented by a set of keygraphs and correspondences are es-

ablished between keygraphs. We refer to a keygraph with k ver-

ices as a “k -keygraph”. In this paper, we consider 2-keygraphs, 3-

eygraphs and 4-keygraphs. 
gnition based on keygraph matching, Pattern Recognition Letters 
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Fig. 1. (a) A match of 4-keygraphs between a query image (left) and a model image 

(right). (b) Keygraph matching pipeline. Starting from keypoint matches, keygraphs 

of cardinality k are defined based on keygraphs of cardinality k − 1 . Finally, RANSAC 

uses the matches of vertices of 4-keygraphs. 
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Fig. 1 illustrates the keygraph matching pipeline. Correspon-

dences are established between query image keypoints and model

image keypoints based on descriptor similarity; this yields a large

number of both correct and incorrect keypoint matches. Next,

matches of keygraphs of cardinality k are calculated based on key-

graphs of cardinality k − 1 . The computational cost of the stage

that obtains 2-keygraphs can be limited to a small fraction (say,

20%) of the cost of the keypoint matching stage, while the stages

that obtain 3-keygraphs or 4-keygraphs have a negligible cost . As

a result of the keygraph matching phase, the vast majority of in-

correct initial keypoint matches are filtered out while the correct

ones are preserved. Finally, RANSAC is applied to find object poses

represented as affine transformations mapping images. By using

matches of 4-keygraph vertices, RANSAC requires very few itera-

tions, since a large fraction of correct matches is available. 

This paper presents two fundamental contributions. First, we

propose structural and topological properties of keygraphs with

two, three or four vertices. Keygraph properties involve graph edge

length and orientation as well as vertex scale and orientation, be-

ing fundamental to the success of the proposed approach. Second,

we introduce an efficient method to calculate keygraph matches.
Please cite this article as: E. Dazzi et al., Scalable object instance reco
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he proposed method filters out the vast majority of incorrect key-

oint matches, which provides two main advantages: (1) efficiency,

ince RANSAC needs to perform few iterations and (2) increased

ecognition performance, as the strategy allows a large number of

eypoints matches to be established in the initial stage which re-

ults in a large number of correct keypoint matches. 

Our experiments consider an object instance recognition prob-

em in which a query image is matched against a large dataset

f model objects. Query images are subject to realistic occlu-

ions and illumination, viewpoint transformations. In this paper,

e use keygraphs whose vertices are SIFT keypoints, since SIFT is

idely known and has a good matching performance, as shown

y Lowe [21] . As experimentally evaluated by Lowe [21] , SIFT

eatures are robust against problems caused by occlusions, back-

round clutter and illumination changes. And, since transform-

ng keypoint matches into keygraph matches does not eliminate

orrect keypoint matches, the proposed method also presents ro-

ustness against occlusion, background clutter and illumination

hanges. The model dataset is composed of 10 5 images, which gen-

rated a large set of 10 9 SIFT keypoints. 

Experiments showed that obtaining 2-keygraphs filtered out

5% of the incorrect initial keypoint matches (while correct key-

oint matches were not eliminated); next, obtaining 3-keygraphs

educed in 99% the number of incorrect remaining keypoint

atches; then, obtaining 4-keygraphs filtered out a moderate frac-

ion of remaining incorrect matches. As a result, RANSAC required

ery few iterations. In contrast, if simpler 2-keygraphs were used,

ANSAC needed to perform two orders of magnitude more itera-

ions, leading to a total computational at least 25% larger than the

ost of the method based on 4-keygraphs. An even worse result

as obtained by using simple “1-keygraphs” ( i.e. , the initial key-

oint matches). We also present results for the SCRAMSAC method

f Sattler et al. [29] . SCRAMSAC has a similar computational cost as

he proposed method while being based on a different use of spa-

ial properties – namely, consistency in keypoint neighbourhoods.

s shown by experiments, the proposed method achieved superior

esults than SCRAMSAC. 

The remainder of this paper is organised as fol-

ows. Section 2 discusses related works in the literature.

ection 3 presents mathematical definitions regarding keygraph

atching. Section 4 describes an efficient implementation of the

oncepts presented in Section 3 . Section 5 presents experimental

valuation. Finally, Section 6 draws conclusions. 

. Related work 

An advantage gained from using local features is a natural

eometric precision in detection, since fine object structures are

atched. This property is fundamental in tasks such as Structure-

rom-Motion, wide-baseline stereo, augmented reality or object

anipulation by robots, as discussed by Loncomilla [20] . In the

resent paper, we consider the problem of large-scale object in-

tance recognition. Since our goal is introducing the keygraphs

ethod, we employ a relatively simple, hand-crafted descriptor

SIFT), instead of using CNN-based descriptors that are tailored for

mage matching applications, such as the descriptors proposed by

ong and Soatto [7] and Han et al. [10] . Moo Yi et al. [23] employ

 CNN in order to assign a canonical orientation to a keypoint; in

ontrast, SIFT uses the dominant orientation. Buoncompagni et al.

2] propose an efficient method to rank and select keypoints based

n their saliency. 

In order to achieve a better performance, local features con-

eying complementary information should be employed. Tombari

t al. [30] proposed a keypoint detector and descriptor that op-

rates in textureless regions. The result of the keypoint detection

tage is a sparse keypoint set extracted from visually rich regions,
gnition based on keygraph matching, Pattern Recognition Letters 
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hich yields accurate keypoint matches. A different strategy relies

n extracting a dense keypoint set, e.g. , one keypoint from each

ixel. Choy et al. [5] employ CNN’s in order to learn a feature space

here dense local descriptors are compared. 

Keypoints can be extracted from 3D point clouds created us-

ng depth images generated by sensors such as LIDAR. 3D key-

oint detectors and descriptors are evaluated by Tombari et al.

31] and Guo et al. [9] , respectively. The Fast Point Feature His-

ograms (FPFH) proposed by Rusu et al. [28] calculates a 3D key-

oint descriptor as a histogram of angles between surface normals,

easured in the surrounding keypoint neighbourhood. Kim and

ilton [18] improve the performance of FPFH by separately em-

loying neighbourhoods of different sizes and then combining the

atching outputs. Kim et al. [17] propose a framework for reg-

stration of visual data acquired from various 2D and 3D sensing

odalities. 

After the keypoint matching phase, a subset of matches agree-

ng on an object pose instantiation is found; in this context, the

andom Sample Consensus (RANSAC) method proposed by Fischler

nd Bolles [8] is a standard solution. However, if a large fraction of

ncorrect matches is used, RANSAC needs to perform a large num-

er of iterations, leading to a prohibitive computational cost. In

rder to filter out incorrect matches aiming to enable the use of

ANSAC, in the approach of Pang et al. [25] , a candidate keypoint

atch ( p, q ) is filtered out in case the local geometric structure

f p is different from the one of q ; such local geometric structure

s calculated using an optimization process that reconstructs the

eypoint from its three neighbours in the image. The approach of

a Camara Neto and Campos [3] obtains a coarse global registra-

ion between a pair of images, which constrains the keypoint cor-

espondence space; however, in case the fraction of correct key-

oint matches is low, the estimation of coarse global registration

s likely to fail. 

Sattler et al. [29] proposed the Spatial Consensus RANSAC

SCRAMSAC) method. For each tentative keypoint match ( p, q ), a

inimum fraction of the keypoints in a neighbourhood of p is re-

uired to match keypoints in a neighbourhood of q otherwise the

atch is filtered out. Such an approach presents two main draw-

acks in comparison to ours. First, a large keypoint neighbour-

ood is employed in order to decide whether a candidate keypoint

atch is valid, thus making the approach susceptible to the frac-

ion of correct keypoint matches. In contrast, the proposed method

onsiders small keypoint neighbourhoods (up to four keypoints).

econd, SCRAMSAC employs limited spatial information (keypoint

istance only), while the proposed method considers orientation,

cale and position. The computational cost of SCRAMSAC is similar

o the cost of the proposed method: both methods are quadratic in

he number of keypoint matches. 

Previous work investigated the idea of finding correspondences

f small keypoint sets instead of correspondences of individual

eypoints. In particular, using matches of keypoint pairs demon-

trated good results. The method of Carneiro and Jepson [4] checks

or consistency in changes in keypoint scale and orientation as well

s changes in length and orientation of a vector connecting each

eypoint pair. Li et al. [19] additionally employ a Hough trans-

orm in order to filter out a number of keypoint matches. Hao

t al. [12] detect 3D object models (created using Structure-from-

otion) in 2D query images; a candidate match of 2D-3D keypoint

airs is evaluated by back-projecting the 2D positions into the

amera coordinates and then checking whether both 3D distances

re similar [1] . propose a method with a linear cost in the num-

er of matches that explores simple pairwise relations. Zhang et al.

33] employ the co-occurrence statistics of visual words within

ome local image regions. 

Instead of using keypoint pairs, previous work used matches of

eypoint triples or quadruples , which allows exploring richer struc-
Please cite this article as: E. Dazzi et al., Scalable object instance reco

(2017), https://doi.org/10.1016/j.patrec.2017.10.038 
ural information. Zitnick et al. [35] extract all keypoint triples

rom query and model images, which are then mapped to a canon-

cal space where keypoint descriptors are calculated; then, key-

oint triples are matched based on descriptor similarity. Kalantidis

t al. [16] use Delaunay triangulations in order to select a subset

f keypoint triples from both query and model images. Hao et al.

11] detect 3D object models in 2D images; Delaunay triangula-

ions generate keypoint triples from the models, and a valid match

resents consistent changes in keypoint scales and distances of 2D

rojections of 3D points. Hinterstoisser et al. [14] extract keypoint

uadruples and quintuples from the model images, which can be

sed to instantiate a 3D object model onto a 2D query image.

ashimoto and Cesar [13] introduced the concept of keygraphs: all

ossible keygraphs with three vertices are extracted from a model

mage, and Fourier coefficients of keygraph edges are used as local

escriptors; then, during matching time, a Delaunay triangulation

enerates keypoint triples from a query image. 

A drawback of the discussed methods based on matches of

eypoint triples or quadruples is relying on storing pre-calculated

tructures of model keypoints in working memory, which presents

 scalability issue. Our previous approach ( [6] ) avoids that scala-

ility problem: Delaunay triangulations are employed in order to

elect several keypoint triples in the query image. Next, each query

eypoint triple ( i.e. , 3-keygraph) is matched against a model im-

ge in case all its three constituent keypoint matches exist and

he candidate 3-keygraph match satisfies the keygraph properties.

nfortunatelly, it is possible that a set of three correct keypoint

atches do not form a 3-keygraph match, which would occur in

ase those three keypoint matches are not selected by a Delau-

ay triangulation for composing the same keypoint triple in the

uery image. In the present paper, we introduce an efficient strat-

gy that matches all possible keypoint triples or quadruples during

he matching phase, thus preserving correct keypoint matches. 

A different graph-based approach for image matching models

n image as a global graph whose vertices are keypoints. As shown

y Zhang et al. [34] , graph matching techniques can be used to

nd similar images. McAuley et al. [22] consider that graph sim-

larity encompasses three aspects: keypoint descriptors, distances

f keypoint pairs and inner angles of keypoint triples. Park et al.

26] also propose a method that is based on similarity of inner an-

les of keypoint triples. In contrast, our method relies on efficient

omparisons of changes occurring in individual graph edges and/or

ertices. 

. Definitions 

Table 1 summarises the symbols and important concepts

dopted in this paper. 

.1. Keypoints 

A keypoint is a locally distinct feature. Each keypoint p is de-

ected using SIFT and assigned a scale σ p , an orientation θp , a po-

ition x p = (x p , y p ) and a descriptor. Let P I be the set of keypoints

xtracted from an image I; each keypoint p ∈ P I is assigned an

nique, random integer label L (p) ranging from 1 to | P I | . 
A keypoint match is a pair ι = (p, q ) , where keypoint p is in a

uery image I Q and keypoint q is in a model image I M 

. A set M 1v 

as the initial keypoint matches between a pair of images. 

Each keypoint match ( p i , q i ) is associated to a change in keypoint

cale , 

σi = 

σq i 

σp i 

, (1) 
gnition based on keygraph matching, Pattern Recognition Letters 
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Table 1 

Summary of symbols and concepts adopted in the paper. 

Symbols Description 

I Q , I M Query image I Q and model image I M . 
p , σ p , θ p , x p Keypoint p with scale σ p , orientation θ p and 2D position 

x p . 

L (p) Keypoint label in an image. 

P I Set of keypoints extracted from an image I . 

E , l E , �E Keygraph edge E with length l E and orientation �E . 

l min , l max Minimum l min and maximum l max allowed edge length in 

a query image. 

E I Q Set of keygraph edges in a query image I Q . 
G = (V G , E G ) Keygraph G with vertex set V G and edge set E G . 
G 2v , G 3v , G 4v 2-keygraph, 3-keygraph and 4-keygraph. 

ι = (p, q ) Keypoint match ι between keypoints p and q . 

μ = (G, H, f ) Match of keygraphs G and H with bijection mapping 

vertices f . 

�σ , �l Change in keypoint scale �σ and change in keygraph edge 

length �l . 

∇ �(·, ·) Dissimilarity of changes in keypoint scale and/or edge 

length. 

�θ , �� Change in keypoint orientation �θ and change in keygraph 

edge orientation ��. 

∇ α( · , · ) Dissimilarity of changes in keypoint orientation and/or 

edge orientation. 

M 1v Set of initial keypoint matches between a pair of images. 

M 2v , M 3v , M 4v Set of matches of 2-keygraphs M 2v , 3-keygraphs M 3v and 

4-keygraphs M 4v . 

N 4v Set of matches of vertices of 4-keygraphs. 
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1 In an image subjected to a zoom of factor κ , each keygraph edge length or SIFT 

scale changes in the same factor κ . Sattler et al. [29] showed that in an image sub- 

jected to a change in viewing angle of ψ degrees, a unit circle becomes an ellipse 

whose longer and shorter axes have length 1 and cos ψ , respectively. For success- 

ful matching, this change in viewing angle must be below 60 °, since SIFT features 

lose reliability when ψ > 60 °, as shown by Lowe [21] . When ψ = 60 ◦, the length 

of the transformed ellipse’s shorter axe divided by the original circle’s diameter is 

cos 60 ◦/ 1 = 0 . 5 . Based on preliminary experiments, we used this value for the pa- 

rameter, thus making keygraph matching invariant to changes in viewing angle of 

at most 60 °. 
2 Rotating an image by θ degrees changes the orientation of every keypoint and 

keygraph edge in θ degrees. Under a moderate change in viewing angle, not every 

keypoint and edge rotates in the same θ degrees, although very distinct changes 

in orientation cannot occur. We allow a maximum difference in rotations of 60 °, 
according to preliminary experiments. 
and a change in keypoint orientation , measured as a (signed) differ-

ence between a pair of 2D orientations ( i.e. , a 2D angle): 

�θi = θq i − θp i . (2)

3.2. Keygraphs 

A keygraph G = (V G , E G ) is a directed attributed graph whose

vertices are keypoints, with vertex set V G (composed of keypoints

in the same image) and graph edge set E G . 
A keygraph match is a triple μ = (G, H, f ) , where G = (V G , E G ) is

a keygraph in a query image and H = (V H , E H ) is a keygraph in a

model image (with G and H being isomorphic), and f : V G → V H is

a bijection mapping V G and V H . 

3.2.1. Keygraph edges 

A keygraph edge is defined as an ordered pair E i j = 〈 p i , p j 〉 ,
where p i and p j are keypoints in the same image. In case E ij is

an edge in a query image, the keypoint labels are such that that

L (p i ) < L (p j ) ; that is, we arbitrarily determine an edge’s direction

to be such that the edge leaves the keypoint with the smaller la-

bel and enters the keypoint with the larger label ( i.e. , from p 1 to

p 2 ). Determining edge direction is a necessary step in order to as-

sign edge orientation, which is obtained as the regular angle of a

2D vector with the horizontal axis (as illustrated in Fig. 3 -c). In a

2D image, a vector v i j = x p j − x p i is associated to E ij ; the length

l E i j 
= | v i j | and the orientation �E i j 

of v ij are assigned to edge E ij . 

A match between edges E i j = 〈 p i , p j 〉 and F i j = 〈 q i , q j 〉 with a

bijection f = { (p i , q i ) , (p j , q j ) } has a change in edge length : 

�l i j = 

l F i j 

l E i j 

, (3)

and a change in edge orientation , measured as a (signed) difference

between a pair of 2D orientations ( i.e. , a 2D angle): 

��i j = �F i j 
− �E i j 

. (4)

A set E Q of keygraph edges in a query image I Q is composed of

every keypoint pair 〈 p i , p j 〉 in I Q whose associated keygraph edge

E ij has a length lying between a minimum and a maximum al-

lowed values, l min ≤ l E i j 
≤ l max , and whose keypoint scales σp i , σp j 
Please cite this article as: E. Dazzi et al., Scalable object instance reco

(2017), https://doi.org/10.1016/j.patrec.2017.10.038 
iffer in at most one octave, 0 . 5 ≤ σp i /σp j ≤ 2 . 0 . If a keygraph edge

ith length l in a model image is mapped to a query image in

hich a change in scale s has occurred, its length becomes sl . Thus,

he minimum edge length in a query image l min is related to how

uch the area of an object in a query image can be reduced in

omparison to the area of that object in a model image. As for the

aximum edge length in a query image l max , it should be set suf-

ciently large to occupy the image of the considered object in a

uery image but not unnecessarily large to generate unnecessary

omputational cost. 

.2.2. Dissimilarity between changes in keygraph attributes 

A keygraph match is associated to changes in keypoint scale

σ i ( Eq. (1) ) and changes in edge length �l ij ( Eq. (3) ). Let �φ,

φ′ be a pair of changes in keypoint scale and/or edge length;

 dissimilarity ∇ φ( �φ, �φ′ ) between them is measured as a ratio.

e define a pair of changes �φ, �φ′ to be similar if the largest

ne is at most twice the smaller one: 1 

 . 5 ≤ �φ

�φ′ ≤ 2 . 0 . (5)

A keygraph match is also associated to changes in keypoint

rientation �θ i ( Eq. (2) ) and changes in edge orientation ��ij 

 Eq. (4) ). Let �α, �α′ be a pair of changes in keypoint orienta-

ion and/or edge orientation; a dissimilarity ∇ α( �α, �α′ ) between

hem is measured as an angle. We define a pair of changes �α,

α′ to be similar if the absolute value of the smaller angle be-

ween them is at most 60 °: 2 

rccos ( cos (�α − �α′ )) ≤ 60 

◦. (6)

.2.3. 2-Keygraphs 

A 2-keygraph G 2v = (V G 2v , E G 2v ) has two vertices and one

dge. Given a set E Q of keygraph edges in a query image I Q 
 Section 3.2.1 ), a set M 2v of 2-keygraph matches between I Q 
nd a model image I M 

is obtained by matching each edge E ∈
 Q against I M 

. Let triple μ2v = (G 2v , H 2v , f 2v ) represent a candi-

ate 2-keygraph match, where the query image keygraph G 2v has

dge E 12 = 〈 p 1 , p 2 〉 and the bijection mapping vertices is f 2v =
 (p 1 , q 1 ) , (p 2 , q 2 ) } (with the keypoint matches in f 2v being deter-

ined in the initial keypoint matching stage). This candidate 2-

eygraph match is established if it presents similar changes in at-

ributes: the changes in keypoint scale �σ 1 , �σ 2 and the change

n edge length �l 12 must be pairwise similar ( Eq. (5) ), which yields
3 
2 

)
= 3 pairwise comparisons that must be satisfied ( Fig. 2 -Left).

imilarly, the changes in keypoint orientation �θ1 , �θ2 and the

hange in edge orientation ��12 must be pairwise similar as well

 Eq. (6) ), which yields additional 
(

3 
2 

)
= 3 comparisons that must be

atisfied. 

.2.4. 3-Keygraphs 

A 3-keygraph G 3v = (V G 3v , E G 3v ) is composed of three vertices

nd three edges. A set M 3v of 3-keygraph matches between a pair
gnition based on keygraph matching, Pattern Recognition Letters 

https://doi.org/10.1016/j.patrec.2017.10.038


E. Dazzi et al. / Pattern Recognition Letters 0 0 0 (2017) 1–10 5 

ARTICLE IN PRESS 

JID: PATREC [m5G; November 8, 2017;2:32 ] 

Fig. 2. Structural and topological properties of keygraphs. Left: each 2-keygraph 

match is associated to one change in edge and two changes in vertices, yielding (
1+2 

2 

)
= 3 pairwise comparisons of changes in vertices and/or edge. Middle: each 

3-keygraph match is associated to three changes in edges and three changes in ver- 

tices, yielding 
(

3+3 
2 

)
= 15 comparisons of changes in vertices and/or edges. Right: 

each 4-keygraph match is formed of a pair of 3-keygraphs sharing an edge. 

Fig. 3. Structural attributes of 3-keygraphs. (a) Edge length. (b) Vertex scale. (c) 

Edge orientation. (d) Vertex orientation. 
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Fig. 4. Consistency in changes of 3-keygraph attributes. (a) Consistency among a 

change in vertex scale (changing from σp 1 to σq 1 ) and a change in edge length (from 

l p 2 ,p 3 to l q 2 ,q 3 ): 0 . 5 ≤
σq 1 

/σp 1 

l q 2 ,q 3 /l p 2 ,p 3 

≤ 2 . 0 . (f) Consistency among a change in vertex ori- 

entation (from θp 2 to θq 2 ) and a change in edge orientation (from �p 1 ,p 3 to �q 1 ,q 3 ): 

arccos ( cos ((θq 2 − θp 2 ) − (�q 1 ,q 3 − �p 1 ,p 3 ))) ≤ 60 ◦ . 
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(  
f images contains all combinations of three 2-keygraph matches

ielding a valid 3-keygraph match. Let μ3v = (G 3v , H 3v , f 3v ) repre-

ent a candidate 3-keygraph match, where the query image key-

raph G 3v has edges V G 3v = {〈 p 1 , p 2 〉 , 〈 p 1 , p 3 〉 , 〈 p 2 , p 3 〉} and the bi-

ection mapping vertices is f 3v = { (p 1 , q 1 ) , (p 2 , q 2 ) , (p 3 , q 3 ) } . In or-

er for this candidate 3-keygraph match to be established, similar

hanges in keygraph attributes are required: the changes in key-

oint scale �σ 1 , �σ 2 , �σ 3 and the changes in edge length �l 12 ,

l 13 , �l 23 must be pairwise similar ( Eq. (5) ), which yields 
(

6 
2 

)
= 15

airwise comparisons that must be satisfied ( Fig. 2 -Middle). Simi-

arly, the changes in keypoint orientation �θ1 , �θ2 , �θ3 and the

hanges in edge orientation ��12 , ��13 , ��23 must be pair-

ise similar as well ( Eq. 6 ), which yields additional 
(

6 
2 

)
= 15 pair-

ise comparisons that must be satisfied. Fig. 3 shows 3-keygraph

ttributes: keypoint scale, orientation and edge length, orienta-

ion. Fig. 4 illustrates the structural evaluation of matches of 3-

eygraphs. 

.2.5. 4-Keygraphs 

A 4-keygraph G 4v = (V G 4v , E G 4v ) has four vertices and five edges.

 set M 4v of 4-keygraph matches between a pair of images is

omposed of all combinations of two 3-keygraphs sharing a 2-

eygraph ( Fig. 2 -Right). Both constituent 3-keygraph matches are

onsistent w.r.t. the changes in the shared edge and vertices. Ob-

aining 4-keygraphs eliminates disconnected 3-keygraphs as well

s 3-keygraphs sharing one vertex only. 
Please cite this article as: E. Dazzi et al., Scalable object instance reco

(2017), https://doi.org/10.1016/j.patrec.2017.10.038 
.3. Final matches of keygraph vertices 

Given a set M 4v of 4-keygraph matches between a pair of im-

ges, the set N 4v of 4-keygraph vertex matches is 

N 4v = { (p, q ) : (p, q ) ∈ f 4v and (G 4v , H 4v , f 4v ) ∈ M 4v } . (7) 

. Methodology and implementation 

The proposed method is composed of a learning phase and

 matching phase. During the learning phase, keypoints are ex-

racted from all model images and then indexed in the descriptor

pace. During the matching phase, keypoints are extracted from a

uery image I Q ; then, object matching between I Q and the dataset

f model images follows five stages: keypoint matching and then

atching of 2-keygraphs, 3-keygraphs and 4-keygraphs, followed

y RANSAC using matches of 4-keygraph vertices. This pipeline is

llustrated in Fig. 1 -b. 

.1. First stage: keypoint matching 

In order to index model keypoint descriptors, we use a mod-

fied version of the hierarchical K -means tree proposed by Muja

nd Lowe [24] . Given all model keypoints, K -means splits the de-

criptor space, recursively; a region with less than K descriptors

hen becomes a leaf node. When a query image keypoint p tra-

erses a tree, in an intermediate tree level, p ’s descriptor is as-

igned to the nearest cluster center. In a leaf node, the distance

rom p ’s descriptor to the cluster center is calculated and repre-

ents the similarity between p and each one of the keypoints in

his leaf; then, p restarts the traversal from the next most sim-

lar cluster mean (in an intermediate level). When p examines a

otal of L stored descriptors, the traversal stops. As a result, p es-

ablishes up to one keypoint match with each model image I M n 

where n stands for the n -th model image in the dataset): during
gnition based on keygraph matching, Pattern Recognition Letters 
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Fig. 5. Transforming 2-keygraphs into 3-keygraphs. In this Figure, each match of 2- 

keygraphs is represented by its edge in the query image. Given a 2-keygraph G 2v 
with edge 〈 p 1 , p 2 〉 , the method searches for pairs of edges leaving vertices p 1 and 

p 2 and entering in a same vertex. Figure shows that p 3 is such a common vertex; 

then, the candidate match of 3-keygraphs represented in this Figure by the vertex 

set { p 1 , p 2 , p 3 } is checked for being valid. Figure also shows that edges 〈 p 1 , a ′ 〉 , 〈 p 1 , 
a ′ ′ 〉 , 〈 p 2 , b ′ 〉 , 〈 p 2 , b ′ ′ 〉 do not form 3-keygraphs. 

Fig. 6. Transforming 3-keygraphs into 4-keygraphs. In this Figure, each match of 3- 

keygraphs is represented by its edges in the query image. Given a 3-keygraph G 3v 
with edges { 〈 p 1 , p 2 〉 , 〈 p 1 , p 3 〉 , 〈 p 2 , p 3 〉 }, each 3-keygraph sharing an edge with G 3v 
generates a match of 4-keygraphs. Figure shows that a 4-keygraph G 4v with vertices 

{ p 1 , p 2 , p 3 , p 4 } is established. Figure also shows that a 3-keygraph G ′ 3v with vertices 

{ a ′ , b ′ , p 2 } does not form a 4-keygraph together with G 3v , since G 3v and G ′ 3v do not 

share edges. 
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the traversal, if p is compared to more than one keypoint from the

same model image, only the match with the highest similarity be-

tween descriptors is maintained. We also performed experiments

employing at most two keypoint matches per model image, instead

of one; however, using 4-keygraphs, this approach provided only a

small gain in performance, thus we opted to use only one match

since it allowed a more fair comparison of the keygraphs method

with methods based on simple keypoints. 

4.2. Second stage: matching of 2-keygraphs 

Let M 1v be a set of initial keypoint matches between a

query image I Q and a model image I M n 
. Each pair of keypoint

matches in M 1v is checked for constituting a match of 2-keygraphs

( Section 3.2.3 ). This generates a set M 2v of 2-keygraph matches

between images I Q and I M n 
. The set M 2v is implemented as

a (sparse) matrix of lists T 2v , with one list L p, q for each key-

point match ι = (p, q ) in the set of matches of vertices of 2-

keygraphs N 2v = { (p, q ) : (p, q ) ∈ f 2v and (G 2v , H 2v , f 2v ) ∈ M 2v } . A

list L p, q contains all elements ( p ′ , q ′ ) such that there is an estab-

lished match of 2-keygraphs whose edge in the query image is 〈 p,

p ′ 〉 and whose bijection mapping vertices is {( p, q ), ( p ′ , q ′ )}. Each

list L p, q stores its elements in sorted order, with an element ( p ′ , q ′ )
being assigned a sort key value consisting of a pair (L (p ′ ) , L (q ′ )) . 

For each 2-keygraph match that is established ( i.e. , that satisfies

the 2-keygraph properties shown in Section 3.2.3 ), the calculated

changes in edge and vertices are stored in the matrix T 2v as well,

in order to be employed in the next stage. 

4.3. Third stage: matching of 3-keygraphs 

Let μ2v = (G 2v , H 2v , f 2v ) be a match of 2-keygraphs in M 2v with

edge in the query image E 12 = 〈 p 1 , p 2 〉 and bijection mapping ver-

tices f 2v = { (p 1 , q 1 ) , (p 2 , q 2 ) } . In a matrix of lists T 2v , let lists L p 1 ,q 1 
and L p 2 ,q 2 be associated to keypoint matches ( p 1 , q 1 ) and ( p 2 , q 2 ),

respectively ( Section 4.2 ). Since each list stores its elements in

sorted order, finding elements which are common to both lists has

a linear complexity in the total number of elements. Each element

( p 3 , q 3 ) which is present in both lists L p 1 ,q 1 and L p 2 ,q 2 yields a can-

didate match of 3-keygraphs μ3v = (G 3v , H 3v , f 3v ) with edges in the

query image E G 3v = {〈 p 1 , p 2 〉 , 〈 p 1 , p 3 〉 , 〈 p 2 , p 3 〉} and bijection map-

ping vertices f 3v = { (p 1 , q 1 ) , (p 2 , q 2 ) , (p 3 , q 3 ) } . Then, the method

checks whether this 3-keygraph match is valid ( Section 3.2.4 ).

Since edge changes ��ij , �l ij and vertex changes �θ i , �σ i were

previously calculated and stored, the current stage only needs to

evaluate the pairwise dissimilarities ( Eqs. (5) and (6) ). Also, since it

is known that the changes involved in each individual 2-keygraph

match are pairwise similar, they do not need to be re-evaluated;

e.g. , it is known that the changes in edge length and vertex scale

{ �l 12 , �σ 1 , �σ 2 } are pairwise similar. 

Each 2-keygraph match in M 2v is checked for being involved in

3-keygraph matches, as illustrated in Fig. 5 . 

A set M 3v of 3-keygraph matches between a pair of im-

ages is implemented as a (sparse) matrix of lists T 3v . In T 3v ,

list L 
p 1 ,q 1 
p 2 ,q 2 

, which is associated to a pair of keypoint matches

{( p 1 , q 1 ), ( p 2 , q 2 )}, contains all elements ( p ′ , q ′ ) such that there

is a 3-keygraph match whose bijection mapping vertices is f =
{ (p 1 , q 1 ) , (p 2 , q 2 ) , (p ′ , q ′ ) } ; thus, in case the 3-keygraph match as-

sociated with f is established, three elements are inserted into ma-

trix T 3v : an element ( p ′ , q ′ ) inserted into list L 
p 1 ,q 1 
p 2 ,q 2 

, ( p 2 , q 2 ) inserted

into L 
p 1 ,q 1 
p ′ ,q ′ and ( p 1 , q 1 ) inserted into L 

p 2 ,q 2 
p ′ ,q ′ . 

4.4. Fourth stage: matching of 4-keygraphs 

Let μ3v = (G 3v , H 3v , f 3v ) be a 3-keygraph match in M 3v with

edges in the query image E G = {〈 p 1 , p 2 〉 , 〈 p 1 , p 3 〉 , 〈 p 2 , p 3 〉} and

3v 

Please cite this article as: E. Dazzi et al., Scalable object instance reco

(2017), https://doi.org/10.1016/j.patrec.2017.10.038 
ijection mapping vertices f 3v = { (p 1 , q 1 ) , (p 2 , q 2 ) , (p 3 , q 3 ) } . The

ethod verifies whether there are other 3-keygraph matches shar-

ng an edge with μ3v by individually checking each constituent 2-

eygraph match. That is, for the edge E 12 = 〈 p 1 , p 2 〉 , the method

hecks in the matrix of lists T 3v whether list L 
p 1 ,q 1 
p 2 ,q 2 

has any in-

erted element; for each keypoint match ( p ′ , q ′ ) in list L 
p 1 ,q 1 
p 2 ,q 2 

, if

 (p ′ ) > L (p 3 ) , then a match of 4-keygraphs μ4v = (G 4v , H 4v , f 4v ) is

stablished, where keygraph G 4v in the query image is the union of

oth 3-keygraphs, with edges E G 4v = E G 3v ∪ {〈 p 2 , p ′ 〉 , 〈 p 3 , p ′ 〉} and

ijection mapping vertices f 4v = f 3v ∪ { (p ′ , q ′ ) } . Similarly, for the

dge E 13 = 〈 p 1 , p 3 〉 , list L 
p 1 ,q 1 
p 3 ,q 3 

is verified, while, for the edge E 23 =
 p 2 , p 3 〉 , list L 

p 2 ,q 2 
p 3 ,q 3 

is verified. 

Each established 3-keygraph match is checked for being in-

olved in 4-keygraph matches, as illustrated in Fig. 6 . 

.5. Fifth stage: pose estimation using RANSAC 

Let set N 

Q 
M n 

contain matches of 4-keygraph vertices between a

uery image I Q and a model image I M n 
( Eq. (7) ). Then, RANSAC

nds object poses represented as affine transformations mapping

mages. The total number of pose evaluations, with the whole

ataset of model images, is set in advance. One iteration ( i.e. , pose

valuation) of RANSAC proceeds as follows. Let set N 

Q = N 

Q 
M 1 

∪
· · ∪ N 

Q 
M N 

contain all established keypoint matches between the

uery image I Q and the whole set of N model images. Then, one
gnition based on keygraph matching, Pattern Recognition Letters 
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3 In matching methods based on 3D object models ( e.g. , the method of [15] ), 

training keypoints obtained from multiple viewpoints can be combined to generate 

a putative object pose. This enables the projected 3D object to have a larger area 

than in case matching is performed by using a single 2D warped training image that 

only considers a frontal view of the object (which is the case of the present paper). 

Therefore, a threshold of 0.5 on the overlap criterion (intersection divided by union 

of segmentation masks) is too tight for image-to-image matching methods in Hsiao 

et al. [15] ’s dataset. Based on preliminary experiments, we found that setting the 

threshold as 0.4 allows a more fair comparison of the investigated methods. As an 

illustration, Figs. 9 -d and 9 - shows cases in which keypoints correctly matched the 

query images but, because of the way the training segmentation is projected, their 

overlap criterion fell under the 0.5 threshold. 
eypoint match ι = (p, q ) is randomly selected from N 

Q ; let key-

oint q belong to a model image I M n 
. Next, two additional key-

oint matches are randomly selected from the subset N 

Q 
M n 

which

ontains matches with the model image I M n 
only. The three key-

oint matches generate an affine transformation mapping images

 Q and I M n 
, whose confidence is estimated as the number of in-

iers. 

The next, final stage deals with multiple detections. First, the

andidate affine transformations are sorted based on confidence.

he best solution is returned and its model image ground-truth

egmentation is projected onto the query image by using the re-

overed affine transformation. Then, the next best solution re-

ounts its agreeing keypoint matches, now discarding matches ly-

ng inside the projection of any previously returned solution; in

ase there are remaining keypoint matches, this solution is then

eturned and projected onto the query image. This process contin-

es as long as there are remaining candidate solutions. 

.6. Algorithmic complexity 

If there are n keypoint matches between a pair of images,

 ( n 2 ) candidate matches of 2-keygraphs are evaluated; this yields

 2v 2-keygraph matches, with a maximum of d 2v edges leav-

ng a same vertex (in the query image). Next, O (n 2v · d 2v ) candi-

ate 3-keygraph matches are evaluated; this yields n 3v 3-keygraph

atches, with a maximum of d 3v 3-keygraphs sharing a same

dge (in the query image). Next, O (n 3v · d 3v ) candidate 4-keygraph

atches are evaluated. In terms of computational complexity, the

orst-case occurs when a query image is identical to a model im-

ge: all candidate 2-keygraph matches would be established, yield-

ng O (n · d 2v ) 2-keygraph matches, O (n · d 2v 
2 ) 3-keygraph matches

nd O (n · d 2v 
3 ) 4-keygraph matches, where d 2v = O (n ) . Thus, an ef-

ective approach to control the combinatorial complexity limits the

umber d 2v of edges leaving a vertex as well as the number d 3v of

-keygraphs sharing an edge i.e. , makes d 2v = O (1) and d 3v = O (1) .

s a result, the cost of the stage that finds 2-keygraphs dominates

he cost of the following stages. 

. Experiments and results 

We consider an object instance recognition problem where

mages are subject to realistic viewpoint, scale and appearance

hanges, as well as occlusion and background clutter. We employed

he CMU10 dataset made available by Hsiao et al. [15] . This dataset

ontains ten types of model objects, for a total of 250 model im-

ges with resolution 640 × 480 or 1600 × 1200 pixels. There are

00 query images with resolution 640 × 480 pixels. The dataset

ollected by Hsiao et al. [15] considers a natural setting, consisting

f common household objects in real, cluttered environments un-

er different lighting conditions, occlusions and viewpoints (exam-

les of images are presented in Figs. 1 and 9 ). Ten different objects

re considered: clam chowder can, diet coke can, juice box, orange

uice carton, pot roast soup, rice pilaf box, rice tuscan box, soy milk

an, soy milk carton and tomato soup can. Some objects present

elatively few visual features ( e.g. , diet coke can and soy milk can)

hile other objects present a larger number of features ( e.g. , clam

howder can and rice pilaf box). We decided to average out the

nal accuracy measure over all the ten object classes in order to

etter focus on the main result of the present paper, namely, the

ain in performance and efficiency provided by using k -keygrahs

ith k = 3 or k = 4 in comparison to using k = 1 or k = 2 (we

xperimentally observed that all the ten considered object cate-

ories presented such gains in performance and efficiency). In or-

er to simulate a large-scale scenario, we also considered an ad-

itional set of 10 5 “distractor” model images, obtained from the

xford Buildings dataset introduced by Philbin et al. [27] . Their
Please cite this article as: E. Dazzi et al., Scalable object instance reco
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odel keypoints are indexed together with the true model key-

oints from the CMU10 dataset. The distractor images consider a

ery large range of different visual contexts, effectively simulating

 “real-world” scenario in which many distinct model objects are

onsidered. This yielded a total of 10 9 SIFT keypoints which were

ndexed in a hierarchical K -means tree using K = 16 . The VLFeat

ibrary ( [32] ) was used for keypoint extraction. 

For each detected object in a query image, we used the recov-

red affine transformation to project the model image’s ground-

ruth segmentation onto the query image, which yields a region A ;

 detection is correct if (A ∩ A gt ) / (A ∪ A gt ) > 0 . 4 , where A gt is the

round-truth in the query image. 3 For each of the ten model ob-

ects, we plotted a precision/recall curve and then calculated the

rea underneath the curve; this is denoted as Average Precision

AP). The average AP over all ten AP values summarises the results;

e denote this average value as “AP ”. 

Object matching can be divided into three stages: keypoint

atching, keypoint match filtering and RANSAC which finds affine

ransformations. We evaluated five strategies for the match fil-

ering stage. (1) Not filtering out keypoint matches, i.e. , RANSAC

ses the initial keypoint matches; this is similar to a traditional

pproach that relies only on descriptor similarity and does not

onsider spatial information, such as the original SIFT method of

owe [21] which uses simple, individual keypoints. (2) Using 2-

eygraphs, which presents similarities with the method of Li et al.

19] that finds matches of keypoint pairs. (3) Using 3-keygraphs.

4) Using 4-keygraphs. And (5) using the SCRAMSAC method of

attler et al. [29] . 

The maximum and minimum allowed keygraph edge length in

 query image was set as l max = 256 and l min = 8 pixels, for images

f resolution 640 × 480; those values were set empirically, follow-

ng the discussion in Section 3.2.1 . RANSAC considers a keypoint

atch as correct if the distance, in the query image, between the

rue keypoint position ( x, y ) and the mapped model keypoint’s po-

ition ( x ′ , y ′ ) is lower than three pixels. 

During tree traversal, each query keypoint p investigated L =
0 0 0 model keypoints, leading p to establish up to 40 0 0 initial

eypoint matches (with at most one match with each model im-

ge). Next, each query keypoint retained only its N < L matches

ith highest similarity between descriptors. 

Fig. 7 presents the AP per maximum number N of initial

atches of a query keypoint. Limiting N is useful in order to con-

rol the quadratic complexity of the keygraph matching phase.

xperiments show that using a small N generated few initial

atches in total. In this case, simple keypoints achieved a simi-

ar AP as keygraphs; this demonstrates that transforming keypoints

nto keygraphs did not eliminate a significant number of correct key-

oint matches . Simple keypoints benefited moderately from using

 larger number of initial matches: the AP improved from .39 to

44 when N increased from 10 to 10 2 (however, a large number of

ANSAC iterations, R = 10 6 , was used). Then, as N increased even

ore, so did the number of initial matches and the fraction of in-

orrect correspondences; in this case, simple keypoints achieved

 poor performance, as a consequence of an infeasible number
gnition based on keygraph matching, Pattern Recognition Letters 
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Fig. 7. Average AP ( i.e. , average value of the area underneath the precision-recall 

curve over the ten object classes) versus value of the parameter N which sets the 

maximum number of initial matches of a query keypoint. The parameter R sets the 

number of RANSAC iterations. 

Fig. 8. Average AP versus number R of RANSAC iterations, using N = 10 3 initial 

matches per query keypoint. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Average AP and average number of keypoint matches between a query image and 

each model image (before RANSAC), using N = 10 0 0 initial matches per query key- 

point. The method based on 2-keygraphs, which employ R = 10 6 RANSAC itera- 

tions, require a total computational cost approximately 25% larger than the methods 

based on 3- or 4-keygraphs. 

Method Avg. number of keypoint matches AP 

Keypoints, R = 10 6 44.7 .35 

2-keygraphs, R = 10 6 10.1 .47 

3-keygraphs, R = 10 5 0.12 .52 

4-keygraphs, R = 10 5 0.06 .53 

SCRAMSAC, R = 10 6 1.5 .48 
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of RANSAC iterations becoming necessary. In contrast, 4-keygraphs

benefited from using a larger number of initial matches: the AP

improved from .37 to .53 when N increased from 10 to 10 3 . This

demonstrates that using a larger N did yield a larger number of

correct keypoint matches, even though those additional matches

had a lower descriptor similarity than the matches obtained by

using a small N only. Interestingly, 2-keygraphs achieved a con-

sistently lower AP than 3- or 4-keygraphs, even when much more

RANSAC iterations were used; this is a consequence of 2-keygraphs

not filtering out as many incorrect matches as 3- or 4-keygraphs

do. 2-keygraphs achieved its best performance (an AP of .50) by

using a moderate number of initial matches, N = 500 , and a large

number of RANSAC iterations, R = 10 6 . 

Fig. 8 shows the estimated AP per number R of RANSAC it-

erations. We used a moderately large number of initial matches

( N = 10 3 ); nevertheless, the stage which finds 2-keygraphs pre-

sented a small computational cost in comparison to the keypoint

matching stage. 4-keygraphs achieved a high AP even using very

few RANSAC iterations. 3-keygraphs performed slightly worse than

4-keygraphs when very few RANSAC iterations were employed. In

case of 2-keygraphs, much more RANSAC iterations were neces-

sary; for instance, 2-keygraphs achieved an AP of .36 and .47 for

R = 10 5 and R = 10 6 , respectively, while 4-keygraphs achieved .51

and .53 for R = 10 4 and R = 10 5 , respectively. 

We evaluated the computational cost of a single-thread C

implementation of the object recognition pipeline. By using 4-

keygraphs and N = 10 3 , each query image required approximately
Please cite this article as: E. Dazzi et al., Scalable object instance reco

(2017), https://doi.org/10.1016/j.patrec.2017.10.038 
ight seconds (not considering SIFT feature extraction). The stage

hich transforms the initial keypoint matches into 2-keygraphs

equired approximately 20% of the total cost. Next, obtaining 3-

eygraphs and 4-keygraphs had a negligible cost (less than 1%).

hen, RANSAC, using R = 10 5 iterations, required 1% of the total

ime. On the other hand, by using 2-keygraphs, employing R = 10 6 

ANSAC iterations required a significant 20% of the total time;

hus, the method based on 2-keygraphs required a total compu-

ational cost approximately 25% superior than the methods based

n 3- or 4-keygraphs, due to the cost of RANSAC. In case of the

ethod based on simple keypoints, using R = 10 6 led RANSAC to

equire 45% of the total computational cost. Since setting R = 10 6 

ed RANSAC to require a significant percentage of the total time,

he fact that 4-keygraphs use R = 10 5 is an important advantage in

omparison to 2-keygraphs which use R = 10 6 . In order for simple

eypoint to achieve a good performance, an infeasible number of

ANSAC iterations, R = 10 7 , was necessary. 

We also evaluated the SCRAMSAC method proposed by [29] .

e set the SCRAMSAC parameter r = 128 pixels which provided

etter results than using the value r = 7 that is suggested by the

uthors ( i.e. , we considered larger keypoint neighbourhoods). We

et N = 10 3 initial keypoint matches. By using R = 10 5 and R = 10 6 

ANSAC iterations, SCRAMSAC achieved an average AP of .44 and

48, respectively. In comparison, 4-keygraphs presented a superior

erformance, with an AP of .53 using R = 10 5 . 

Table 2 shows the average number of keypoint matches be-

ween a query image and a model image, before RANSAC (us-

ng N = 10 3 initial matches). A model image with less than four

eypoint matches contributed with zero to the averaged value,

ince RANSAC can not instantiate an affine transformation in such

n image. The stage which finds 2-keygraphs yielded a reduc-

ion of 75% in the total number of incorrect keypoint matches.

he next stage, which finds 3-keygraphs, yielded a reduction of

9% in the number of remaining incorrect keypoint matches. Next,

nding 4-keygraphs filtered out a moderate fraction of incorrect

atches. In case of SCRAMSAC, it filtered out a larger number of

ncorrect keypoint matches than the 2-keygraphs method. How-

ver, 4-keygraphs achieved a significantly better performance than

CRAMSAC. 

Fig. 9 presents examples of matches between query and model

mages. Fig. 9 -a shows 2-keygraph matches; these were trans-

ormed into 4-keygraph matches, as shown in Fig. 9 -b. From Fig. 9 -

 to 9 -b, two incorrect 2-keygraph matches were filtered out.

igs. 9 -c and 9 -d show the same query image as before, but

onsidering a different model image, presenting a larger num-

er of established keypoint matches: Fig. 9 -c shows 4-keygraph

atches, while Fig. 9 -d shows the keypoint matches after RANSAC

s well as the affine transformation mapping images. Fig. 9 -e

resents incorrect 3-keygraph matches that were eliminated when

-keygraphs were obtained. Fig. 9 -f shows another example of key-

oint matches after RANSAC and the calculated affine transforma-

ion. 
gnition based on keygraph matching, Pattern Recognition Letters 
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Fig. 9. Matches between query (left) and model (right) images. Keygraph matches before RANSAC: (9-a) 2-keygraphs; (9-b) and (9-c) 4-keygraphs; (9-e) 3-keygraphs. (9-d) 

and (9-f) show final keypoint matches (after RANSAC) and the calculated affine transformations. 

Table 3 

AP results obtained on the dataset of [6] . 

Method AP 

Ratio test of Lowe [21] .53 

Multiple triangulations of Dazzi et al. [6] .55 

4-keygraphs, proposed in this paper .68 
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We compared 4-keygraphs with our previous method ( [6] ),

hich finds matches of keypoint triples that are generated by us-

ng several Delaunay triangulations. A valid keypoint triple is re-

uired to satisfy similar spatial properties as 3-keygraphs. Such an

pproach is particularly effective in a context where a large num-

er of initial keypoint matches is established, since they are fil-

ered out by using triangulations. In this experiment, the original

ataset adopted by Dazzi et al. [6] is used. It is composed of the

50 images of the CMU10 dataset employing a K -means tree with

 = 16 . During tree traversal, a query image keypoint is compared

gainst L = 50 stored model keypoints. In case of 4-keygraphs, a

aximum of N = 5 initial keypoint matches is retained for each

uery keypoint, while the method of Dazzi et al. [6] uses N = 50 .

e also investigated the performance of the “ratio test” proposed

n Lowe [21] , in which each query keypoint matches a single model

eypoint. In this experiment, R = 10 3 RANSAC iterations were used,

hich was sufficiently large for all methods. Table 3 shows the re-

ults. Lowe’s ratio test and Dazzi et al. [6] ’s method achieved an AP

f .53 and .55, respectively, while 4-keygraphs achieved a signifi-

antly higher AP (.68). This result demonstrates that the methods

f Dazzi et al. [6] and Lowe’s ratio test did eliminate correct key-

oint matches, since they achieved a lower AP than 4-keygraphs. 

. Conclusion 

Methods based on local feature matching establish keypoint

orrespondences relying on descriptor similarity. In object instance

ecognition, establishing matches between query keypoints and

ifferent model images yields a large number of correct keypoint

atches, which improves recognition performance. However, this

roduces a large fraction of incorrect correspondences, which hin-

ers the performance of RANSAC-like pose estimation. In order to

void this problem, we proposed a method that filters a large num-

er of incorrect keypoint matches (while the correct ones are pre-

erved), thus enabling RANSAC to be used. The proposed method
Please cite this article as: E. Dazzi et al., Scalable object instance reco

(2017), https://doi.org/10.1016/j.patrec.2017.10.038 
ransforms keypoint matches into matches of k -keygraphs. Each

alid keygraph match satifies semi-local affine constraints which

re efficiently evaluated. 

Keygraphs of cardinality k are defined based on keygraphs

f cardinality k − 1 . Keypoint matches are transformed into 2-

eygraphs, which involves calculating changes in length, orienta-

ion and scale. In our experiments, obtaining 2-keygraphs reduced

5% of the incorrect keypoint matches; this operation had a small

omputational cost in comparison to the cost of keypoint match-

ng. Next, 3-keygraphs are obtained at a negligible computational

ost, which yielded a reduction of 99% of the remaining incor-

ect keypoint matches. As a consequence, the method based on

-keygraphs achieved a high performance even using 1% of the

ANSAC iterations in comparison with the method based on 2-

eygraphs. Our experiments also showed that using all the initial

eypoint matches, as well as SCRAMSAC, performed worse than us-

ng 3-keygraphs. 

We proposed 4-keygraphs, that are generated from a pair of

-keygraphs sharing an edge. Such method to obtain 4-keygraphs

an be employed to find keygraphs of cardinality larger than four.

owever, since a valid match of k -keygraphs requires k correct key-

oint matches, one drawback associated to using k > 4 is a reduced

robability of detecting small or occluded objects, which present

ew keypoint matches. In this paper, we used 4-keygraphs, that

rovided the best results. 

The keygraphs method has few intrinsic parameters. The two

ost important ones are the thresholds on attribute changes

scale/length and orientation). The values were selected in order

o allow a large range of viewpoint change between images. 

In this paper, we employed SIFT features, chosen mostly due

o their popularity. Keygraph matching uses scale, orientation and

osition computed by the keypoint detector. SIFT could be read-

ly replaced by other descriptors which generate scale, orientation

nd position information with a similar precision as SIFT. Examples

f methods proposed more recently than SIFT are SURF (Speeded-

p Robust Features) and ORB (Oriented FAST corner detector and

otated BRIEF features). The main improvement that they brought

s in terms of computational efficiency, while the improvement in

erms of performance is not as substantial. CNN-based local de-

criptors have been proposed more recently and could also replace

IFT, as long as they are designed to produce local scale and orien-

ation information. However, CNN-based descriptors require sub-

tantially more computational power than SIFT, SURF and ORB. It
gnition based on keygraph matching, Pattern Recognition Letters 
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is worth noting that the proposed keygraphs method tolerates an

elevated amount of noise in the estimations of scale, orientation

and position of keypoints, being robust to wide variations in view-

point. Its focus is on the structure of small sets of local features

rather the quality of individual matches. A benchmark evaluation

of descriptors is therefore beyond the scope of this paper and con-

stitutes a suggestion for future work. 

Another direction for future work is an extension of our key-

graphs method for 3D point clouds, using 3D keypoint detectors

and descriptors for applications such as 3D object retrieval and 3D

scene understanding. 
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