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67 Preface

68 While the proliferation of sensors being deployed in cell phones, vehicles, build-
69 ings, roadways, and computers allows for larger and more diverse information to be
70 collected, the cost of acquiring labels for all these data remains extremely high. To
71 overcome the burden of annotation, alternative solutions have been proposed in the
72 literature to learn decision making models by exploiting unlabeled data from the
73 same domain (data acquired in similar conditions as the targeted data) or also data
74 from related but different domains (different datasets due to different conditions or
75 provided by different customers). In many real-world machine learning scenarios,
76 using only the data from the same domain might be insufficient and data or models
77 borrowed from similar domains can significantly improve the learning process.
78 Such a process, referred to as domain adaptation, aims to leverage labeled data in
79 one or more related domains (sources), in order to build models for a target domain.
80 Domain adaptation is particularly critical for service companies, where all
81 machine learning components deployed in a given service solution should be
82 customized for a new customer either by annotating new data or, preferably, by
83 calibrating the models in order to achieve a contractual performance in the new
84 environment. While adaptation across domains is a challenging task for many
85 applications, in this book, we focus on solutions for visual applications.
86 The aim of the book is to give a relatively broad view of the field by selecting a
87 diverse set of methods which made different advances in the field. The book begins
88 with a comprehensive survey of domain adaptation and transfer learning, including
89 historical shallow methods, more recent methods using deep architectures, and
90 methods addressing computer vision tasks beyond image categorization, such as
91 detection, segmentation or visual attributes. Then, Chap. 2 gives a deeper look at
92 dataset bias in existing datasets when different representations including features
93 extracted from deep architectures are used. The rest of the book is divided into four
94 main parts, following the same structure as the survey presented in Chap. 1.
95 Part I is dedicated to shallow domain adaptation methods, beginning with the
96 widely used geodesic flow kernel (Chap. 3) and subspace alignment (Chap. 4). Both
97 chapters propose solutions for selecting landmark samples in the source dataset.
98 Chapter 5 presents domain-invariant embedding methods and Chap. 6 describes
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99 transductive transfer machines, a method that combines local feature space
100 transformation with classifier selection and parameter adaptation. The first part ends
101 with Chap. 7 that addresses domain adaptation cases where the access to the source
102 data is constrained.
103 Part II is dedicated to deep adversarial discriminative domain adaptation meth-
104 ods. The first two methods presented use a confusion loss as an adversarial
105 objective to adapt the source network towards the target data. The deep CORAL
106 (Chap. 8) learns a nonlinear transformation that aligns correlations of activation
107 layers of the deep model. The deep domain confusion network (Chap. 9) uses a
108 maximum mean discrepancy based domain confusion loss to induce domain
109 invariant representations. In contrast, Chap. 10 presents the domain-adversarial
110 neural network that integrates a gradient reversal layer to promote the emergence of
111 features discriminative for the main learning task and non-discriminate with respect
112 to the domain shift.
113 Part III is a collection of contributions addressing domain adaptation problems
114 different from classical image categorization. As such, Chap. 11 focuses on Fisher
115 vector based patch encoding adaptation in the context of vehicle re-identification.
116 Chapter 12 explores the adaptation of semantic segmentation models trained on
117 synthetic images to correctly operate in real scenarios. Chapter 13 addresses the
118 challenge of pedestrian detection by adapting a deformable part-based model
119 trained on virtual-world data to real world data using structure-aware adaptive
120 structural SVMs. Finally, Chap. 14 proposes a method to generalize semantic part
121 detectors across domains.
122 Part IV concludes the book with unifying perspectives. On the one hand,
123 Chap. 15 proposes to use multi-source domain generalization techniques for the
124 purpose of learning cross-category generalizable attribute detectors. On the other
125 hand, Chap. 16 proposes a common framework that unifies multi-domain and
126 multi-task learning which can be flexibly applied also to zero-shot learning and
127 zero-shot domain adaptation.
128 Overall, this comprehensive volume, designed to form and inform professionals,
129 young researchers, and graduate students, is the first collection dedicated to domain
130 adaptation for visual applications. In this book I wanted not only to address his-
131 torically shallow and recent deep domain adaptation methods, but also contributions
132 focused on object or object part detection, re-identification, image segmentation,
133 attribute detection as well as present generic frameworks that unify domain adap-
134 tation with multi-domain, multi-task and zero-shot learning.
135 To give such a broad view, I brought together leading experts in the field to
136 showcase their techniques. I would like to thank them specially for accepting my
137 invitation and for their dedicated effort to share in this book their valuable expe-
138 riences in the various chapters. Finally, I would also like to thank our Springer
139 editors, Wayne Wheeler and Simon Rees, for their advice and their help in guiding
140 me through the book production process.

141 Meylan, France Gabriela Csurka
142 February 2017
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Chapter 6
Adaptive Transductive Transfer
Machines: A Pipeline for Unsupervised
Domain Adaptation

Nazli Farajidavar, Teofilo de Campos and Josef Kittler

Abstract This chapter addresses the problem of transfer learning by unsupervised1

domain adaptation. We introduce a pipeline which is designed for the case where the2

joint distribution of samples and labels P(Xsrc, Ysrc) in the source domain is assumed3

to be different, but related to that of a target domain P(Xtrg, Ytrg), but labels Ytrg are4

not available for the target set. This is a problem of Transductive Transfer Learning.5

In contrast to other methodologies in this book, our method combines steps that adapt6

both the marginal and the conditional distributions of the data.7

6.1 Introduction8

The transfer learning (TL) taxonomy presented by Pan and Yang [355] and described9

also in Chap. 1 classifies TL approaches into three main categories: Inductive TL,10

when labeled samples are available in both source and target domains; Transductive11

TL, when labels are only available in the source set, and Unsupervised TL, when12

labeled data is not present. They also categorized the methods based on instance13

re-weighting (e.g., [91, 111]), feature space transformation (e.g., [45, 312]) and14

learning parameters transformation (e.g., [21, 55]).15

The work presented in this chapter has its focus on Transductive TL, also known16

as Domain Adaptation (DA) problems. While different methods can potentially be17

combined to achieve a successful transductive transfer, in this work we have mainly18

restricted our attention to methods which focus on feature space transformation,19

learning parameters transformation and their combination.20
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University of Surrey, Guildford, UK
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122 N. Farajidavar et al.

Fig. 6.1 The Adaptive Transductive Transfer Machine (ATTM)

Among the researchers following a similar line of work, Long et al. [312] pro-21

posed to do Joint Distribution Adaptation (JDA) by iteratively adapting both the mar-22

ginal and conditional distributions modified Maximum Mean Discrepancy (MMD)23

algorithm [45]. JDA uses the pseudo target labels to define a shared subspace24

between the two domains. At each iteration, this method requires the construc-25

tion and eigen decomposition of an n × n matrix whose complexity can be up to26

O(n3) where n = nsrc + ntrg is the total number of samples. Similarly, Gong et al.27

in [200] proposed a kernel-based domain adaptation method that exploits intrinsic28

low-dimensional structures in the datasets.29

In this chapter1 we propose a Transductive Transfer Machine (TTM) algorithm30

which combines methods that adapt the marginal and the conditional distribution31

of the samples, so that the source and target datasets become more similar. After32

adaptation, the transformed source domain data can be used to design a classifier33

for the target domain’s samples. The TTM approaches this problem by combining34

four types of adaptation: (a) solving the task in a lower dimensional space that is35

shared between the two domains, (b) a set of local transformations to further increase36

the domain similarity, and (c) a set of class-conditional transformations aiming to37

increase the similarity between the posterior probability of samples in the source and38

target sets, (d) and finally we introduce the Adaptive TTM (ATTM), which uses two39

unsupervised dissimilarity measures before step (c) to perform classifier selection40

and automatic kernel parameter tuning.41

Section 6.2 presents the core TTM components of our method and discusses the42

relation with previous works. This is followed in Sect. 6.3 by a description of our43

ATTM framework. In Sect. 6.4, the proposed pipeline is compared against other state-44

of-the-art methods and showing performance boost in cross-domain image classifi-45

cation, using various datasets. Section 6.5 concludes the paper.46

6.2 Marginal and Conditional Distribution Adaptation47

In order to introduce the ATTMdepicted in Fig. 6.1, we will first present its core com-48

ponent, feature space transformation, referred to as Transductive Transfer Machines49

(TTM), summarized in the steps below:50

1This chapter is an amalgamation of the works published in [152–154] with additional analysis
taking into account the works of other authors which were developed concurrently to our work.
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6 Adaptive Transductive Transfer Machines: A Pipeline … 123

Fig. 6.2 The effect of different steps of the pipeline on digits 1 and 2 of the MNIST → USPS
datasets, visualized in 2D through PCA. Source samples (MNIST) are indicated by stars, target
ones (USPS) by circles, red indicates samples of digit 1 and blue indicates digit 2

1. A global linear transformation G ′ is applied to Xsrc and Xtrg such that the marginal51

distribution of the source samples, P(G ′(Xsrc)) becomes more similar to that of52

target’s, P(G ′(Xtrg)). This is done by minimizing the MMD between the sets as53

described in Sect. 6.2.1.54

2. Aiming to minimize the difference between the marginal distributions, a local55

transformation is applied to each transformed source domain sample56

G ′′i (G ′(x
src
i )). This transformation, dubbed TransGrad, uses the gradient of the57

target data log-likelihood at each source sample. Details are in Sect. 6.2.2.58

3. Finally, aiming to reduce the difference between the conditional distributions in59

source and target spaces, a class-based transformation is applied to each class of60

the transformed source samples G ′′′yi
(G ′′i (G ′(x

src
i ))). While the first two steps are61

unsupervised transfer learning methods, this step is transductive, as it uses source62

labels. The transformation applies translation and scale transformations (TST) to63

each training set, as described in Sect. 6.2.3.64

Fig. 6.2 illustrates these steps using a dataset composed of digits 1 and 2 from MNIST65

and USPS datasets. The first two principal components of the source data are used66

to project the data into a two dimensional space for a better visualization.67
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124 N. Farajidavar et al.

6.2.1 Shared Space Detection with MMD68

In the first step of TTM pipeline, we look for a shared space projection that reduces69

dimensionality of the data whilst minimizing the reconstruction error. As explained70

in [312], one possibility for that is to search for an orthogonal transformation matrix71

W ∈ R
f× f ′ such that the embedded data variance is maximized,72

max
W�W=I

T r(W�XHX�W) , (6.1)73

where X = [Xsrc;Xtrg] ∈ R
f×nsrc+ntrg is the input data matrix that combines source74

and target samples, T r(·) is the trace of a matrix, H = I − 1
nsrc+ntrg

11 is a centering75

matrix where I is the identity matrix, 11 is a (nsrc + ntrg)× (nsrc + ntrg) matrix of76

ones and f ′ is the dimensionality after the projection where f ′ ≤ f .77

The optimization problem can be efficiently solved by eigen decomposition. How-78

ever, the above PCA-based representation may not reduce the difference between79

source and target domains, hence the need for a more appropriate transformation80

remains.81

Following [213, 312, 354, 471] the empirical MMD measure, proposed in [354],82

is used as the distance measure to compare different distributions. This algorithm83

searches for a projection matrix, W ∈ R
f× f ′ which minimizes the distance between84

the means of the two distributions:85

∣∣∣∣∣∣
∣∣∣∣∣∣

1

nsrc

nsrc∑
i=1

W�xi − 1

ntrg

nsrc+ntrg∑
j=nsrc+1

W�x j

∣∣∣∣∣∣
∣∣∣∣∣∣
2

= T r(W�XMX�W) (6.2)86

where M is the MMD matrix and is computed as follows:87

Mi j =

⎧⎪⎨
⎪⎩

1
nsrcnsrc

, xi , x j ∈ Xsrc

1
ntrgntrg

, xi , x j ∈ Xtrg

−1
nsrcntrg

, otherwise.

(6.3)88

The constraint optimization problem then is to minimize Eq. (6.2) such that89

Eq. (6.1) is maximized, i.e., solve the following eigen-decomposition problem:90

(XMX� + εI)W = XHX�WD, giving the eigenvectors W and the associated eigen-91

values in the form of the diagonal matrix D. The effect is to obtain a lower dimensional92

shared space between the two domains. Consequently under the new representation93

G ′(x) =W�X, the marginal distributions of the two domains are drawn closer to94

each other, as the distance between their means is minimized. The effect of this95

transformation is shown2 in Fig. 6.2b.96

2Note however that in Fig. 6.2b a 2D view of feature space was generated using PCA and only
two out of ten classes of digits in MNIST/USPS dataset are shown, while the MMD computation was
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6 Adaptive Transductive Transfer Machines: A Pipeline … 125

6.2.2 Sample-Based Adaptation with TransGrad97

In the next step of the pipeline, we propose a sample-based transformation that shifts98

the source probability density function toward target clusters. Via the TransGrad step99

a set of local translations is applied to the source samples, making their distribution100

more similar to that of the target samples.101

In general, target data may, but does not have to, lie in the same observation space.102

However, for the sake of simplicity, we shall assume that the transformation of the103

source to the target domain is locally linear, i.e., a sample’s feature vector x from the104

source domain is shifted to the target space by105

G ′′(x) = x + γ bx , (6.4)106

where the f dimensional vector bx represents a local offset in the target domain107

and γ is a translation regulator. In order to impose as few assumptions as possible,108

we shall model the unlabeled target data, Xtrg by a mixture of Gaussian probability109

density functions, p(x|λ) =∑K
k=1 wk p(x|λk), whose parameters are denoted by λ =110

{wk,μk,Σk, k = 1, · · · , K } where wk , μk and Σk denote the weight, mean vector111

and covariance matrix of Gaussian component k, respectively, and K denotes the112

number of components p(x|λk) = N (μk,Σk).113

The problem of finding an optimal translation parameter bx can then be formulated114

as one of moving the source point x to a new location G ′′(x) = x + γ bx to increase115

its likelihood as measured using p(G ′′(x)|λtrg). Using the Taylor expansion, in the116

vicinity of x, the likelihood of p(x + γ bx) can be expressed as:117

p(x + γ bx|λ) = p(x|λ)+ γ (∇x p(x|λ))�.bx . (6.5)118

We wish to maximize the p(x + γ bx|λ) with respect to the unknown parameter, bx.119

The learning problem then can be formulated as:120

max
bx

(
p(x|λ)+ γ (∇x p(x|λ))�.bx

)
s.t. b�x .bx = 1 . (6.6)121

122

The Lagrangian of Eq. (6.6) is p(x|λ)+ γ (∇x p(x|λ))�.bx − γ ′(b�x .bx − 1). Setting123

its gradient with respect to bx to zero124

∇x p(x|λ)− γ ′′bx = 0 , (6.7)125

where γ ′′ is considered as TransGrad’s step size parameter and is equal to 2γ ′
γ

, we find126

that the source data-point x should be moved in the direction of maximum gradient127

of the function p(x|λ). Accordingly, bx is defined as128

(Footnote 2 continued)
done in a higher dimensional space with samples from all ten classes. For these reasons it may not
be easy to see that the means of the source and target samples became closer after MMD.
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126 N. Farajidavar et al.

bx = ∇x p(x|λ) =
K∑

k=1

wk p(xsrc|λk).Σ
−1
k (x − μk) . (6.8)129

In practice, Eq. (6.4) translates xsrc using the combination of the translations130

between xsrc and μk , weighted by the likelihood of G ′′(xsrc) given λk . Up to our131

knowledge, this is the first time a sample-based transformation is proposed for transfer132

learning. The effect of this transformation can be seen in Fig. 6.2c.133

6.2.3 Conditional Distribution Adaptation with TST134

In order to reduce the class-conditional distribution mismatch between the corre-135

sponding clusters of the two domains, we used a set of linear class-specific trans-136

formations which we refer to as translation and scaling transformation, or TST. To137

achieve this, we assume that a Gaussian Mixture Model (GMM) fitted to the source138

classes can be adapted in a way that it matches to target classes. We follow Reynolds139

et al. [385] and use only diagonal covariance matrices in the GMM, making the140

complexity of the estimation system linear in f . In our experiments, we further sim-141

plify the model for this step of the pipeline by using only one Gaussian distribution142

per class which is not unrealistic considering the fact that what we are eventually143

interested in are compact and dense classes.144

In order to adapt the class-conditional distributions, one can start with an attempt145

to match the joint distribution of the features and labels between the corresponding146

clusters of the two domains. However, in Transductive Transfer application scenar-147

ios, labeled samples are not available in the target domain. We thus use posterior148

probability of the target instances to build class-based models in the target domain.149

This relates to JDA [312], which uses pseudo-labels to iteratively update a supervised150

version of MMD. In our case, class-based adaptations are simplified to translation151

and scaling transformations, making the computational cost very attractive.152

The proposed transformation adjusts the mean and standard deviation of the cor-153

responding clusters from the source domain, i.e., each feature j of each sample xi is154

adapted as follows:155

G yi (xi
j ) =

xi
j − Esrc[x j , yi ]

σ src
j,yi

σ
trg
j,yi + Etrg

Λsrc
[x j , yi ] ,∀i = 1 : nsrc , (6.9)156

where σ src
j,yi is the standard deviation of feature x j of the source samples labeled as157

yi and Esrc[x j , yi ] is the joint expectation of the feature x j and labels yi defined by158

Esrc[x j , yi ] =
∑nsrc

i=1 xi
j1[y](yi )∑nsrc

i=1 1[y](yi )
. (6.10)159
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In Eq. (6.10) 1[y](yi ) is an indicator function.3160

An estimation of the target joint expectation is thus formulated as161

Etrg[x j , y] ≈ Etrg
Λsrc
[x j , y] =

∑ntrg

i=1 xi
j PΛsrc(y|xi )∑ntrg

i=1 PΛsrc(y|xi )
(6.11)162

We propose to estimate the standard deviation per feature and per class using163

σ
trg
j,yi =

√√√√∑ntrg

n=1(xn
j − Etrg

Λsrc
[x j , yi ])2 PΛsrc(yi |xn)∑ntrg

n=1 PΛsrc(yi |xn)
. (6.12)164

In summary, in a common DA problem, the joint expectation of the features and165

labels over source distribution, Esrc[x j , yi ], is not necessarily equal to Etrg[x j , yi ].166

Therefore, one can argue that if the expectations in the source and target domains are167

induced to be similar, then the model Λ learned on the source data will generalize168

well to the target data. Consequently, the less these distributions differ, the better the169

trained model will perform.170

Since the target expectation Etrg
Λsrc
[x j , yi ] is only an approximation based on the171

target’s posterior probabilities, rather than the ground-truth labels (which are not172

available in the target set), there is a danger that samples that would be miss-classified173

could lead to negative transfer, i.e., negative impact. To alleviate this, we follow174

Arnold et al.’s [18] suggestion and smooth out the transformation by applying the175

following mapping176

G ′′′yi (xi
j ) = (1− θ)xi

j + θG yi (xi
j ) , (6.13)177

where θ ∈ [0, 1] is the transfer rate parameter. As it can be inferred from the MMD178

and TST equations, the effect of the first transformation is that it tries to find a shared179

subspace between the two domains to reduce the distributional mismatch at a global180

level second one is actually a class-specific transformation aiming to reduce the181

class-conditional mismatch among the clusters from one domain to another.182

Iterative refinement of the conditional distribution. Matching the marginal dis-183

tributions does not guarantee that the conditional distribution of the target can be184

approximated to that of the source. To our knowledge, most of the recent works185

related to this issue [55, 76, 378, 587] are Inductive Transfer Learning methods and186

they have access to some labeled data in the target domain which in practice makes187

the posteriors’ estimations easier.188

Instead, our class-specific transformation method (TST), reduces the difference189

between the likelihoods P(G ′′′y (xsrc)|y = c) and P(x|y = c) by using the target190

posteriors estimated from a model trained on gradually modified source domain191

Eq. (6.13). Hence, these likelihood approximations will not be reliable unless we192

3Our method uses insights from Arnold et al. [18], but Eqs. (6.10) and (6.11) rectify those from [18],
as discussed in [154].
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iterate over the whole distribution adaptation process and retrain the classifier model193

using G ′′′y (xsrc).194

Global dissimilarity as stopping criterion. In order to automatically control the195

number of the iterations in our pipeline, we introduce a domain dissimilarity measure196

inspired by sample selection bias correction techniques [99, 434]. Many of those197

techniques are based on weighting samples xsrc
i using the ratio w(x) = P(x|trg)

P(x|src) . This198

ratio can be estimated using a classifier that is trained to distinguish between source199

and target domains, i.e., samples are labeled as either belonging to class src or trg.200

Based on this idea, we use this classification performance as a measure of dissimilarity201

between two domains, i.e., if it is easy to distinguish between source and target202

samples, it means they are dissimilar. We coin this measure as Global Dissimilarity,203

Dglobal(Xsrc, Xtrg) which is defined by the accuracy of a nearest neighbor domain204

classifier using a random split of training and test samples, each containing 50%205

of the data. If the domain dissimilarity is high, then more iterations are needed to206

achieve a better match between the domains.207

Note that other methods could be used as stopping criteria. For instance by check-208

ing the incremental change in the transformation between two consecutive iterations209

we could stop the iterations in case that this measure is below a specific threshold, e.g.,210

using the Frobenius norm between the covariances of the transformed source matri-211

ces of two consecutive iterative steps. However, we use Dglobal(Xsrc, Xtrg) because212

this same measure is also engaged for selecting classifiers.213

6.3 ATTM via Classifier Selection and Parameter214

Adaptation215

We do not assume that source and target domain samples follow the same distribution,216

so the best performing learner for the source set may not be the best for the target set.217

We propose to use dissimilarity measures between source and target sets in order to218

select the classifier and adjust its kernel parameters. The empirical results showed219

that the optimization of SVM using grid search in the parameter space with cross-220

validation on the source led to over-fitting. We therefore prefer to use Kernel LDA221

(KDA) [57] and PCA+NN classifiers as the main learners.222

To select between these classifiers and to adapt the KDA kernel length-scale223

parameter, we propose to use two measures. The first is the Global Dissimilarity224

between the source and target distributions, described in Sect. 6.2.3. The second225

measure, coined Clusters Dissimilarity (Dclusters(Xsrc, Xtrg)), is proportional to the226

average dissimilarity between the source and target clusters, computed using the227

average of the distances between the source class centers and their nearest target228

cluster center. The target clusters centers are obtained using K-means on the target229

data, initialized using source class centers. We therefore assume that there is no230

shuffling in the placement of the clusters from one domain to another.231

The proposed Clusters Dissimilarity is similar to the cross-domain sparse-shot232

similarity of Xu et al. [549] which is used for multi-source motion tracking. Xu233
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et al. proposed to use object motion tracking data in each domain and compared234

tracks across domains using the Kullback-Leibler Divergence between GMMs that235

represent them.4236

When both dissimilarity measures indicate that the cross-domain datasets are very237

different, the choice of a nonparametric classifier such as Nearest Neighbor (NN)238

is preferred, requiring no optimization during training. When the two domains are239

similar at the global level, the choice of a parametric classifier such as KDA is more240

sensible, however, with care taken, to avoid over-fitting on the training set. So if the241

local dissimilarity is high, the kernel parameters must be adapted.242

Following the common practice in the vision community (e.g., [521]), we initially243

set σ parameter of the Radial Basis Function (RBF) kernel in KDA to244

σ = 1

n2
src

nsrc∑
i, j

|xi − x j |1,∀xi , x j ∈ Xsrc (6.14)245

where �1 norm is used in the kernel function. This is then adapted using a linear246

function of the cluster dissimilarity measure247

σ ′ = σγ
′′′

Dclusters(Xsrc, Xtrg) , (6.15)248

where γ
′′′

is a constant value which is empirically set to be the average cluster dis-249

similarity obtained in a set of cross-domain comparisons. This was devised based on250

the fact that the credibility of a classifier is inversely proportional to the dissimilar-251

ity between training and test samples. In the case of KDA, the best way to tune its252

generalization ability is via the kernel length-scale.253

Note that the cluster dissimilarity measure can only be computed if enough sam-254

ples are available in both source and target sets or if they are not too unbalanced.255

When these conditions are not satisfied, our algorithm avoids kernel-based method256

and selects the NN classifier. The parameter selection and model adaptation mech-257

anism is summarized in Table 6.1, where the arrows pointing up (⇑) indicate high258

dissimilarity and arrows pointing down (⇓) indicate low dissimilarity.5259

In conclusion, our ATTM pipeline will use a PCA+NN classifier as its main260

learner model if the global dissimilarity between the two domains is high or there261

are not enough source samples and consequently not enough cluster-wise samples262

to train a highly reliable learner model or to further adjust the classifier parameters.263

In any other circumstances, the model will use the KDA classifier and adjusts the264

kernel length-scale if required.265

Computational complexity. The proposed TTM method for feature space adapta-266

tion has computational cost as follows:267

1. MMD: O(n2) for constructing the MMD matrix, O(n f 2) for covariance compu-268

tation and O( f 3) for eigen decomposition.269

4Table 6.3 shows these two measures computed on all datasets, discussed later.
5The measures were judged as high or low based on a subset of values observed in Table 6.3.
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Table 6.1 Classifier selection and length-scale adaptation

Dglobal Dclusters Classifier How to set σ ′

⇑ ⇑ NN —

⇓ ⇓ KDA σ ′ = σ src

Eq. (6.14)

⇓ ⇑ KDA σ ′ =
σ srcγ

′′′
Dclusters(Xsrc, Xtrg)

2. TransGrad: O(nK ) for Expectation step of GMM computation, O(nK f ) for the270

computation of covariance matrices and O(K ) for the Maximization step of the271

GMM computation. Once the GMM is built, the TransGrad transformation itself272

is O(nK f ).273

3. TST: O(Cn f ) for class-specific TST transformations where C is the number of274

classes.275

4. NN classifier: zero for training and O(n2 f ) for reapplying the classifier.276

For each of the T iterations, the classifier is re-applied and TST is computed. There-277

fore, the overall complexity of our training algorithm is dominated by the cost of278

training a GMM (which is low by using diagonal covariances) and iteratively apply-279

ing a classifier. The core transformations proposed in this pipeline, TransGrad and280

TST are O(nK f ) and O(Cn f ), respectively,i.e., much cheaper than most methods281

in the literature. MMD is the only component whose complexity is greater than linear282

on n, but it is executed only once and its main cost comes from eigen decomposition,283

for which there is a wide range of optimized libraries available.284

By adding the classifier selection step and kernel adaptation to TTM, we obtain285

ATTM, shown in algorithm 4. The classifier selection step uses the computation of286

the Dclusters(Xsrc, Xtrg), which costs O(n2), as it uses K-means clustering, but this287

is executed only once. TST, which has linear cost, is the main part of the algorithm.288

As it uses source labels, it is iterated. The most expensive part of the loop is the289

re-training and application of classifiers.290

Algorithm 4: ATTM: Adaptive Transductive Transfer Machine
Input: Xsrc, Ysrc, Xtrg

1. Search for the shared subspace between the two domains (MMD, Sect. 6.2.1)
2. TransGrad: apply local adjustments to the source marginal distribution (Sect. 6.2.2)
3. Select the appropriate classifier (Sect. 6.3), if it is kernel-based, tune σ using Eq. (6.15)
while T < 10 and |Dglobal(Gt (Xsrc), Xtrg)| > threshold do

4. Find the feature-wise TST transformation Eqs. (6.9), (6.11), 6.12)
5. Transform the source domain clusters Eq. (6.13)
6. Retrain the classifier using the transformed source

Output: Ytrg
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6.4 Experimental Evaluation291

In the experiments of this chapter, we used three public benchmark datasets: the292

USPS/MNIST [110], COIL20 [341] and Caltech+office (OC10) [407]. These are293

widely used to evaluate computer vision and transfer learning algorithms, enabling294

us to compare our results with other state-of-the-art methods. In most of our exper-295

iments, we used their standard features, available from their website: raw images296

for USPS, MNIST and COIL20; and SURFBOV for OC10. In Sect. 6.4.1, we show297

results using DeCAF [128] features.298

Preliminary evaluations. In a preliminary evaluation of the characteristics of the299

domains and classifiers, we evaluated a set of widely used classifiers on all the datasets300

using a fivefold cross-validation, reporting mean accuracy measure in Table 6.2. In301

the case of the NN classifier, we further projected our full space into its principal302

components (PCA), retaining 90% of the energy. As one can note in most of the303

experiments KDA is the winning classifier. SVM is also a strong learner but it requires304

optimization of parameters C and σ , which can make it optimal for the source domain,305

but not necessarily for the target. It is worth noting that PCA+NN’s performance306

is remarkably close to that of KDA on the first two datasets and it is significantly307

superior on the DSLR dataset.308

The two cross-domain dissimilarity measures are shown in Table 6.3. These results309

justify the design options shown in Table 6.1 so NN is used for the digits datasets310

(MNIST↔USPS) and where the number of source samples was not adequate for an311

accurate parameter adaptation (D↔W), and KDA is used for the remaining transfer312

tasks, with kernel parameters set based on Dclusters(Xsrc, Xtrg).313

Probing and benchmark results. We performed probing experiments to evaluate the314

relevance of each component of the proposed system. The simplest design, labeled315

TTM0 refers to an iterative version of TST [154]; TTM1 is the combination of316

the MMD and TST; and finally TTM2 adds to TTM1 the samplewise marginal317

adaptation (TransGrad) applied before TST (see Fig. 6.1). We have also carried out318

experiments to show that our proposed classifier selection and model adaptation319

techniques (ATTM) improve the performance of both TTM and JDA algorithms320

significantly. We compared our methods with four state-of-the-art approaches [200,321

312, 354, 438] using the same public datasets and the same settings as those of [200,322

312]. The results are in Table 6.4. Further comparisons with other DA methods such323

as Sampling Geodesic Flow (SGF) using the Grassmann manifolds [206] are reported324

in [200].325

Table 6.2 Evaluation of four classifiers using fivefold cross-validation on individual domains

Classifier MNIST USPS COIL1 COIL2 Caltech Amazon Webcam DSLR

PCA+NN 91.97 93.64 99.02 98.91 38.80 60.59 79.58 76.95

LR 86.15 89.22 92.36 92.22 56.27 72.46 80.01 67.49

KDA 94.05 94.84 100.00 99.71 58.16 78.73 89.54 63.94

SVM 91.80 95.28 99.72 99.44 57.17 74.86 86.44 75.80
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As one can note, all the DA methods improve the accuracy over the baseline.326

Furthermore, our ATTM method generally outperforms all the other methods. The327

main reason for that is that our method combines three different feature adaptation328

techniques with a further classifier parameter adaptation step.329

In most of the tasks, both TTM1, 2 algorithms show comparative performance330

with respect to the JDA [312]. The average performance accuracy of the TTM1331

and TTM2 on 16 transfer tasks is 55.10 and 56.20%, respectively, where the per-332

formance improved by 0.22 and 1.32% compared to the best performing baseline333

method JDA [200]. Moreover in almost all datasets, TTM2 wins over TTM1 due334

to its initial domain dissimilarity adjustments using the TransGrad. On average, our335

methods (TTM1, TTM2 and ATTM) give better results than JDA [312] (and AJDA)336

because the MMD-based transformation of JDA is coarser than ours. Furthermore,337

in JDA [312] the number of iterations is a predefined constant, in our algorithm we338

based this number on a sensible measure of domain dissimilarity described earlier.339

Moreover, the proposed TTM guarantees an acceptable level of performance about340

five times faster than the best performing state-of-the-art approach. GFK performs341

well on some of the OC10 experiments but poorly on the others. The reason is that the342

subspace dimension should be small enough to ensure that different sub-spaces tran-343

sit smoothly along the geodesic flow, which may not be an accurate representation344

of the input data. JDA and TTM perform much better by learning a more accurate345

shared space.346

We also evaluated the proposed classifier selection and model adaptation tech-347

niques on JDA [312] and TTM [153]. The results are indicated by AJDA and ATTM in348

Table 6.4. Their performance shows that the model adaptation significantly enhances349

the final classifier. One should note that in the cases where our model adaptation350

technique selects the NN classifier as the main learner of the algorithm, the results351

remain steady. The performance gains of 4.59 and 4.29% in ATTM and AJDA,352

respectively, validate the proposed dissimilarity measures for model selection and353

adaptation. The proposed model adaptation step of the pipeline selected the NN clas-354

sifier for MNIST↔USPS and for DSLR→Webcam. For all other transfer problems,355

KDA was chosen and σ adaptation was used.356

Shared subspace projection methods. After developing our MMD-based algo-357

rithm, we came across alternative subspace projection methods [25, 164]. In [25] the358

author proposes the Domain Invariant Projection (DIP) where a Grassmann manifold359

latent subspace is used to project the data and the MMD measure is subsequently360

applied for evaluating the source and target domains dissimilarity. The aim is to find361

a representation of the data that is invariant across different domains. Alternatively,362

they propose a second projection, DIP-CC, that not only minimizes the distance363

between the distribution of the projected source and target, but also yields better364

classification performance. The algorithm searches for a projection that encourages365

samples with the same labels to form a more compact cluster which is achieved by366

minimizing the distance between the projected samples of each class and their mean.367

In contrast to the manifold alignment methods that use local statistical structure368

of the data [519, 520, 577], the authors of [164] exploit the global covariance sta-369
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Table 6.5 Recognition accuracies obtained with 1NN classifiers on target domains using different
shared subspace projection methods, compared to MMD, i.e., the first step of our TTM

DA experiment DIP [25] DIP-CC [25] SA [164] MMD

C→ A 50.0 51.8 39.0 46.1

C→W 47.6 47.7 36.8 38.0

C→ D 49.0 51.4 39.6 45.9

A→ C 43.3 43.2 35.3 40.6

A→W 46.7 47.8 38.6 40.0

A→ D 42.8 43.3 37.6 31.9

W→ C 37.0 37.1 32.3 31.3

W→ A 42.5 41.1 37.4 31.9

W→ D 86.4 85.3 80.3 89.2

D→ C 39.0 35.8 32.4 33.4

D→ A 40.5 41.0 38.0 31.2

D→W 86.7 84.0 83.6 87.5

average 51.0 50.8 44.2 45.6

tistical structure of the two domains during the adaptation process. The source data370

is projected onto the source subspace and the target data onto the target subspace in371

contrast to most domain adaptation methods in the literature. This method, called372

Subspace Alignment (SA), is totally unsupervised and does not require any target373

labels. SA makes use of the correlated features in both domains where some of these374

features can be specific to one domain yet correlated to some other features in the375

other one allowing the method to use both shared and domain specific features.376

In Table 6.5 we compare these state-of-the-art latent subspace detection methods377

(DIP, DIP-CC, and SA) with the MMD-PCA-based method which we used in our378

TTM framework. As one can note, some of these methods outperform MMD-based379

subspace projection at the cost of a higher computational complexity. All these380

subspace detection methods could replace the first step of our pipeline and potentially381

improve the final classification performance. However, given that MMD is the step382

with the highest asymptotic cost of our pipeline (see Sect. 6.3), we advocate that it383

is important to use the simplest unsupervised subspace transformation method and384

focus on the transductive part of the algorithm to improve performance.385

6.4.1 Using Stronger Features (DeCAF)386

Following the same experimental setting, we present further results for OC10 dataset.387

The previous sections show the results obtained using the original standard feature388

extraction method for these datasets (bags of SURF features). Owing to the success
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of deep CNN methods, a newer feature extraction method has become standard,389

known as Deep Convolutional Activation Features (DeCAF) [127]. State-of-the-390

art method [275] Following [275], we used the output from the sixth layer as the391

visual features, leading to 4,096-dim DeCAF6 features. In this set of experiments we392

compare our TTM and ATTM methods with the methods that aim to solve the DA task393

by adapting the classifiers hyperplanes or by means of auxiliary classifiers, namely;394

the Adaptive SVM (A-SVM) [555], Domain Adaptation Machine (DAM) [135] and395

DA-M2S [74].396

In [135], the author proposed a multiple source domain adaptation method referred397

to as DAM by leveraging a set of pre-learned classifiers independently trained with398

the labeled patterns from multiple source domains. More specifically, DAM was399

introduced as a data dependent regulator constrained by Least-Squares SVM (LS-400

SVM), which forces the target classifier to share similar decision values with auxiliary401

classifiers from the relevant source domains on the unlabeled patterns of the target402

domain. For a single source domain scenario, the experiments were repeated 10 times403

by using randomly generated subsets of source and target domain samples and the404

mean performance is reported in Table 6.6.405

The DA-M2s method of [74] is an extension of the DAM method where from406

each RGB image data two nonlinear features are extracted, one describing the depth407

information and the other containing visual information. Using the Kernel Canonical408

Correlation Analysis (KCCA), the correlation between these two types of features is409

maximized. For the OC10 dataset (which have no depth maps), the method DA-M2s410

w/o depth represents source and target domains as two views of the same object411

classes. DA-M2s and LS-SVM are built on top of adaptive SVM (SVM-A) [555],412

which is a general framework to adapt one or more existing classifiers of any type to413

a new target dataset.414

Note that in Table 6.6 the baseline without any transformation using the DeCAF415

features and NN classifier is significantly better than the results of Table 6.4, simply416

because the DeCAF features are better than SURF. As one can see our TTM and417

ATTM methods both outperform the other state-of-the-art approaches in most of418

the cases gaining 2.9 and 5.96% average performance enhancements over the best419

performing state-of-the-art method of DA-M2S (w/o depth), respectively. One should420

note that in both state-of-the-art approaches, DAM [135] and DA-M2S [74], the421

model has access to a small number of labeled samples from the target domain while422

our model does not benefit from that.423

Sensitivity of TransGrad parameters. To evaluate sensitivity of TransGrad parame-424

ters, we ran TTM varying values of the regulator γ ′′ of the TransGrad step Eq. (6.7),425

and the results are in Fig. 6.3a. For all datasets, the performance improved as γ ′′426

grows but it plateau for γ ′′ ≥ 5. For this reason we used γ ′′ = 5 in all experiments427

of this chapter.428
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Table 6.6 Results obtained on the OC10 dataset using DeCAF features. The Baseline, JDA and
TTM columns show the results achieved using the 1-NN classifier

Transfer Baseline SVM-A DAM DA-M2S JDA TTM ATTM

task DeCAF [555] [135] [74] [312] (1NN)

C→ A 85.70 83.54 84.73 84.27 89.77 89.98 92.17

C→W 66.10 81.72 82.48 82.87 83.73 86.78 90.84

C→ D 74.52 74.58 78.14 75.83 86.62 89.17 92.99

A→ C 70.35 74.36 76.60 78.11 82.28 83.70 86.55

A→W 64.97 70.58 74.32 71.04 78.64 89.81 89.15

A→ D 57.29 96.56 93.82 96.62 80.25 81.36 90.45

W→ C 60.37 85.37 87.88 86.38 83.53 80.41 83.44

W→ A 62.53 96.71 96.31 97.12 90.19 88.52 92.27

W→ D 98.73 78.14 81.27 77.60 100 100 100

D→ C 52.09 91.00 91.75 91.37 85.13 82.90 82.28

D→ A 62.73 76.61 79.39 78.14 91.44 90.81 91.65

D→W 89.15 83.89 84.59 83.31 98.98 98.98 98.98

Avg 70.33 83.95 84.06 84.97 87.55 87.87 90.90

We also ran TTM with varying number Gaussian components K in the TransGrad429

step for the target GMM. Theoretically as the number of GMM components increases430

the translations get more accurate and the performance becomes more stable. We431

plot the classification accuracy w.r.t. K in Fig. 6.3b. Note that for K = 1, TransGrad432

contributes to an improvement over the baseline, as it induces a global shift toward433

the target set. But in general, for values of K smaller than the number of classes,434

we do not actually expect TransGrad to help, as it will shift samples from different435

classes toward the same clusters. This explains why the performance increases with436

K for K > 2. Based on this result, we adopted K = 20 in all other experiments of437

this chapter.438

Timing comparison. We have compared the execution time of our TTM algorithm439

against JDA [312] in the transfer task from the MNIST digits dataset to the USPS440

digits dataset. Both algorithms were implemented in Matlab and were evaluated441

on a Intel Core2 64bit, 3 GHz machine running Linux. We averaged the time mea-442

sured over five experiments. The JDA algorithm took 21.38± 0.26 s and our full443

TTM framework took 4.42± 0.12 s, broken down as: 0.40± 0.01 seconds to find444

the appropriate shared space using the MMD, 1.90± 0.06 to perform the sample-445

wise marginal distribution adaptations using TransGrad and finally 2.42± 0.12 s to446

apply the iterative conditional distribution adaptations (TST). The time complexity447

obviously will grow for both AJDA and ATTM due to kernel computation of the448

KDA classifier.449
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(a) TransGrad γ ′′ (b) TransGrad GMM components’ size

Fig. 6.3 The effect of different γ ′′ values and number of GMM clusters in the TransGrad step of our
framework on the final performance of the pipeline for three cross-domain experiments. Constant
lines show the baseline accuracy for each experiment

6.5 Conclusion and Discussion450

In this chapter, we introduced transductive transfer machines (TTM), which aim to451

adapt both the marginal and conditional distributions of the source samples so that452

they become more similar to those of target samples, leading to an improvement in453

the classification results in DA scenarios. The proposed TTM pipeline consists of454

the following steps: first, a global linear transformation is applied to both source and455

target domain samples, so that their expected values match. In the next step, a novel456

method applies a sample-based transformation to source samples. This leads to a457

finer adaptation of their marginal distribution, taking into account the likelihood of458

each source sample given the target PDF. Finally, we proposed to iteratively adapt the459

class-based posterior distribution of source samples using an efficient linear trans-460

formation whose complexity only depends on the number of features. In addition,461

we proposed the use of two unsupervised comparison measures, Global and Clusters462

Dissimilarities. The former is used both to automatically determine the number of463

iterations needed and also to select the pipeline’s main learner model. The latter mea-464

sure, Clusters Dissimilarity, is used for adjusting the classifier’s parameters for the465

new target domain. Our approach was shown to outperform state-of-the-art methods466

on various datasets, with a lower computational cost.467

Our work [153] was one of the first to show that although DeCAF features lead to468

a step change in both discrimination power and generalization of image descriptors,469

they actually do not “undo the domain bias,” as argued in [127]. DeCAF features can470

in fact be improved by applying feature space transformation using DA methods,471

and our method (ATTM) delivers improvement in performance, outperforming all472

the methods published prior to [152].473
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93. Dan Cireşan, Ueli Meier, Jonathan Masci, and Jürgen Schmidhuber. Multi-column deep neural248

network for traffic sign classification. Neural Networks, 32:333–338, 2012.249

94. Stéphane Clinchant, Gabriela Csurka, and Boris Chidlovskii. Transductive adaptation of black250

box predictions. In Annual Meeting of the Association for Computational Linguistics (ACL),251

2016.252

420546_1_En_BOOKBACKMATTER � TYPESET DISK LE � CP Disp.:25/5/2017 Pages: 354 Layout: T1-Standard



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

326 References

95. David Cohn, Les Atlas, and Richard Ladner. Improving generalization with active learning.253

Machine Learning, 15(2):201–221, 1994.254

96. Brendan Collins, Jia Deng, Kai Li, and Li Fei-Fei. Towards scalable dataset construction: An255

active learning approach. In European Conference on Computer Vision (ECCV), 2008.256

97. Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler,257

Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The Cityscapes dataset for258

semantic urban scene understanding. In IEEE Conference on Computer Vision and Pattern259

Recognition (CVPR), 2016.260

98. Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Scharwächter, Markus Enzweiler,261

Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset. In262

CVPR Workshop on The Future of Datasets in Vision (FCV), 2015.263

99. C. Cortes, M. Mohri, M. Riley, and A. Rostamizadeh. Sample selection bias correction theory.264

In Proceedings of the 19th international conference on Algorithmic Learning Theory, ALT’08,265

pages 38–53, Berlin, Heidelberg, 2008. Springer-Verlag.266

100. Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. Algorithms for learning kernels267

based on centered alignment. Journal of Machine Learning Research, 13(1):795–828, 2012.268

101. Nicolas Courty, Rémi Flamary, Devis Tuia, and Alain Rakotomamonjy. Optimal transport for269

domain adaptation. CoRR, arXiv:1507.00504, 2015.270

102. Elliot J. Crowley and Andrew Zisserman. In search of art. In ECCV Workshop on Computer271

Vision for Art Analysis, 2014.272

103. Elliot J. Crowley and Andrew Zisserman. The state of the art: Object retrieval in paintings273

using discriminative regions. In BMVA British Machine Vision Conference (BMVC), 2014.274

104. Elliot J. Crowley and Andrew Zisserman. The art of detection. In ECCV Workshop on Com-275

puter Vision for Art Analysis, (CVAA), 2016.276

105. Gabriela Csurka, Boris Chidlovskii, and Stéphane Clinchant. Adapted domain specific class277

means. In ICCV workshop on Transferring and Adapting Source Knowledge in Computer278

Vision (TASK-CV), 2015.279

106. Gabriela Csurka, Boris Chidlovskii, Stéphane Clinchant, and Sophia Michel. Unsupervised280

domain adaptation with regularized domain instance denoising. In ECCV workshop on Trans-281

ferring and Adapting Source Knowledge in Computer Vision (TASK-CV), 2016.282

107. Gabriela Csurka, Boris Chidlovskii, and Florent Perronnin. Domain adaptation with a domain283

specific class means classifier. In ECCV Workshop on Transferring and Adapting Source284

Knowledge in Computer Vision (TASK-CV), 2014.285

108. Gabriela Csurka, Christopher Dance, Lixin Fan, Jutta Willamowski, and Cédric Bray. Visual286

categorization with bags of keypoints. In ECCV Workshop on Statistical learning in computer287

vision (SLCV), 2004.288

109. Gabriela Csurka, Diane Larlus, Albert Gordo, and Jon Almazan. What is the right way to289

represent document images? CoRR, arXiv:1603.01076, 2016.290

110. Yan Le Cun, B. Boser, J. S. Denker, R. E. Howard, W. Habbard, L. D. Jackel, and D. Henderson.291

Handwritten digit recognition with a back-propagation network. In Annual Conference on292

Neural Information Processing Systems (NIPS), 1990.293

111. Wenyuan Dai, Yuqiang Chen, Gui-rong Xue, Qiang Yang, and Yong Yu. Translated learning:294

Transfer learning across different feature spaces. In Annual Conference on Neural Information295

Processing Systems (NIPS), 2008.296

112. Wenyuan Dai, Qiang Yang, Giu-Rong Xue, and Yong Yu. Boosting for transfer learning. In297

International Conference on Machine Learning (ICML), 2007.298

113. Wenyuan Dai, Qiang Yang, Gui-Rong Xue, and Yong Yu. Self-taught clustering. In Interna-299

tional Conference on Machine Learning (ICML), 2008.300

114. Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection. In IEEE301

Conference on Computer Vision and Pattern Recognition (CVPR), 2005.302

115. Hal Daumé III. Frustratingly easy domain adaptation. In Annual Meeting of the Association303

for Computational Linguistics (ACL), 2007.304

116. Hal Daumé III. Frustratingly easy domain adaptation. CoRR, arXiv:0907.1815, 2009.305

420546_1_En_BOOKBACKMATTER � TYPESET DISK LE � CP Disp.:25/5/2017 Pages: 354 Layout: T1-Standard

http://arxiv.org/abs/1507.00504
http://arxiv.org/abs/1603.01076
http://arxiv.org/abs/0907.1815


U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

References 327

117. Hal Daumé III, Abhishek Kumar, and Avishek Saha. Co-regularization based semi-supervised306

domain adaptation. In Annual Conference on Neural Information Processing Systems (NIPS),307

2010.308

118. Hal Daumé III and Daniel Marcu. Domain adaptation for statistical classifiers. Journal of309

Artificial Intelligence Research, 26(1):101–126, 2006.310

119. Jason V. Davis, Brian Kulis, Prateek Jain, Suvrit Sra, and Inderjit S. Dhillon. Information-311

theoretic metric learning. In International Conference on Machine Learning (ICML), 2007.312

120. Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale313

hierarchical image database. In IEEE Conference on Computer Vision and Pattern Recognition314

(CVPR), 2009.315

121. Thomas Deselaers, Bogdan Alexe, and Vittorio Ferrari. Localizing objects while learning316

their appearance. In European Conference on Computer Vision (ECCV), 2010.317

122. Chris Ding, Tao Li, Wei Peng, and Haesun Park. Orthogonal nonnegative matrix tri-318

factorizations for clustering. In ACM SIGKDD Conference on Knowledge Discovery and319

Data Mining (SIGKDD), 2005.320

123. Santosh Divvala, Ali Farhadi, and Carlos Guestrin. Learning everything about anything:321

Webly-supervised visual concept learning. In IEEE Conference on Computer Vision and322

Pattern Recognition (CVPR), 2014.323

124. Piotr Dollár, Christian Wojek, Bernt Schiele, and Pietro Perona. Pedestrian detection: a bench-324

mark. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2009.325

125. Piotr Dollár, Christian Wojek, Bernt Schiele, and Pietro Perona. Pedestrian detection: an326

evaluation of the state of the art. Transactions of Pattern Recognition and Machine Analyses327

(PAMI), 34(4):743–761, 2012.328

126. Jeff Donahue, Judy Hoffman, Erik Rodner, Kate Saenko, and Trevor Darrell. Semi-supervised329

domain adaptation with instance constraints. In IEEE Conference on Computer Vision and330

Pattern Recognition (CVPR), 2013.331

127. Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and332

Trevor Darrell. Decaf: A deep convolutional activation feature for generic visual recognition.333

CoRR, arXiv:1310.1531, 2013.334

128. Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and335

Trevor Darrell. Decaf: A deep convolutional activation feature for generic visual recognition.336

In International Conference on Machine Learning (ICML), 2014.337

129. David L. Donoho. Compressed sensing. Transactions on Information Theory, 52:1289–1306,338

2006.339

130. Mark Dredze and Koby Crammer. Online methods for multi-domain learning and adapta-340

tion. In International Conference on Empirical Methods in Natural Language Processing341

(EMNLP), 2008.342

131. Mark Dredze, Alex Kulesza, and Koby Crammer. Multi-domain learning by confidence-343

weighted parameter combination. Machine Learning, 79(1):123–149, 2010.344

132. Alain Droniou and Olivier Sigaud. Gated autoencoders with tied input weights. In Interna-345

tional Conference on Machine Learning (ICML), 2013.346

133. Kun Duan, Devi Parikh, David Crandall, and Kristen Grauman. Discovering localized347

attributes for fine-grained recognition. In IEEE Conference on Computer Vision and Pattern348

Recognition (CVPR), 2012.349

134. Lixin Duan, Ivor W. Tsang, and Dong Xu. Domain transfer multiple kernel learning. Trans-350

actions of Pattern Recognition and Machine Analyses (PAMI), 34(3):465–479, 2012.351

135. Lixin Duan, Ivor W. Tsang, Dong Xu, and Tat-Seng Chua. Domain adaptation from multiple352

sources via auxiliary classifiers. In International Conference on Machine Learning (ICML),353

2009.354

136. Lixin Duan, Ivor W. Tsang, Dong Xu, and Steve J. Maybank. Domain transfer SVM for video355

concept detection. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),356

2009.357

137. Lixin Duan, Dong Xu, and Shih-Fu Chang. Exploiting web images for event recognition in358

consumer videos: A multiple source domain adaptation approach. In IEEE Conference on359

Computer Vision and Pattern Recognition (CVPR), 2012.360

420546_1_En_BOOKBACKMATTER � TYPESET DISK LE � CP Disp.:25/5/2017 Pages: 354 Layout: T1-Standard

http://arxiv.org/abs/1310.1531


U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

328 References

138. Lixin Duan, Dong Xu, and Ivor W. Tsang. Domain adaptation from multiple sources: A361

domain-dependent regularization approach. Transactions on Neural Networks and Learning362

Systems, 23(3):504–518, 2012.363

139. Lixin Duan, Dong Xu, and Ivor W Tsang. Learning with augmented features for heteroge-364

neous domain adaptation. Transactions of Pattern Recognition and Machine Analyses (PAMI),365

36(6):1134–1148, 2012.366

140. Lixin Duan, Dong Xu, Ivor W Tsang, and Jiebo Luo. Visual event recognition in videos by367

learning from web data. Transactions of Pattern Recognition and Machine Analyses (PAMI),368

34(9):1667–1680, 2012.369

141. John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning370

and stochastic optimization. Technical report, EECS Department, University of California,371

Berkeley, 2010.372

142. Miroslav Dudík, Robert E. Schapire, and Steven J. Phillips. Correcting sample selection373

bias in maximum entropy density estimation. In Annual Conference on Neural Information374

Processing Systems (NIPS), 2005.375

143. Alan Edelman, Tomás A. Arias, and Steven T. Smith. The geometry of algorithms with376

orthogonality constraints. Journal of Matrix Analysis and Applications, 20(2):303–353, 1998.377

144. David Eigen, Christian Puhrsch, and Rob Fergus. Depth map prediction from a single image378

using a multi-scale deep network. In Annual Conference on Neural Information Processing379

Systems (NIPS), 2014.380

145. Ian Endres, Vivek Srikumar, Ming-Wei Chang, and Derek Hoiem. Learning shared body381

plans. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012.382

146. Markus Enzweiler and Dariu M. Gavrila. Monocular pedestrian detection: Survey and exper-383

iments. Transactions of Pattern Recognition and Machine Analyses (PAMI), 31(12):2179–384

2195, 2009.385

147. Victor Escorcia, Juan Carlos Niebles, and Bernard Ghanem. On the relationship between386

visual attributes and convolutional networks. In IEEE Conference on Computer Vision and387

Pattern Recognition (CVPR), 2015.388

148. Marc Everingham, Luc Van Gool, Chris Williams, John Winn, and Andrew. Zisserman.389

The pascal visual object classes (voc) challenge. International Journal of Computer Vision,390

88(2):303–338, 2010.391

149. Theodoros Evgeniou and Massimiliano Pontil. Regularized multi-task learning. In ACM392

SIGKDD Conference on Knowledge Discovery and Data Mining (SIGKDD), 2004.393

150. Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. LIB-394

LINEAR: A library for large linear classification. Journal of Machine Learning Research, 9,395

2008.396

151. Chen Fang, Ye Xu, and Daniel N. Rockmore. Unbiased metric learning: On the utilization397

of multiple datasets and web images for softening bias. In IEEE International Conference on398

Computer Vision (ICCV), 2013.399

152. Nazli FarajiDavar, Teofilo deCampos, and Josef Kittler. Adaptive transductive transfer400

machines. In BMVA British Machine Vision Conference (BMVC), 2014.401

153. Nazli FarajiDavar, Teofilo deCampos, and Josef Kittler. Transductive transfer machines. In402

Asian Conference on Computer Vision (ACCV), 2014.403

154. Nazli FarajiDavar, Teofilo deCampos, Josef Kittler, and Fei Yang. Transductive transfer learn-404

ing for action recognition in tennis games. In IEEE International Conference on Computer405

Vision (ICCV), 2011.406

155. Nazli FarajiDavar, Teofilo deCampos, David Windridge, Josef Kittler, and William Christmas.407

Domain adaptation in the context of sport video action recognition. In BMVA British Machine408

Vision Conference (BMVC), 2012.409

156. Ali Farhadi, Ian Endres, and Derek Hoiem. Attribute-centric recognition for cross-category410

generalization. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),411

2010.412

157. Ali Farhadi, Ian Endres, Derek Hoiem, and David Forsyth. Describing objects by their413

attributes. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2009.414

420546_1_En_BOOKBACKMATTER � TYPESET DISK LE � CP Disp.:25/5/2017 Pages: 354 Layout: T1-Standard



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

References 329

158. Manaal Faruqui and Chris Dyer. Improving vector space word representations using multilin-415

gual correlation. In Conference of the European Chapter of the Association for Computational416

Linguistics (EACL), 2014.417

159. Li Fei-Fei, Rob Fergus, and Pietro Perona. One-shot learning of object categories. Transac-418

tions of Pattern Recognition and Machine Analyses (PAMI), 28(4):594–611, 2006.419

160. Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual models from few train-420

ing examples: An incremental bayesian approach tested on 101 object categories. Computer421

Vision and Image Understanding, 106(1):57–70, 2007.422

161. Christiane Fellbaum. WordNet: An Electronic Lexical Database. Bradford Books, 1998.423

162. Pedro F Felzenszwalb, Ross B Girshick, David McAllester, and Deva Ramanan. Object detec-424

tion with discriminatively trained part-based models. Transactions of Pattern Recognition and425

Machine Analyses (PAMI), 32(9):1627–1645, 2010.426

163. Robert Fergus, Li Fei-Fei, Pietro Perona, and Andrew Zisserman. Learning object categories427

from google’s image search. In IEEE International Conference on Computer Vision (ICCV),428

2005.429

164. Basura Fernando, Amaury Habrard, Marc Sebban, and Tinne Tuytelaars. Unsupervised visual430

domain adaptation using subspace alignment. In IEEE International Conference on Computer431

Vision (ICCV), 2013.432

165. Basura Fernando, Amaury Habrard, Marc Sebban, and Tinne Tuytelaars. Subspace alignment433

for domain adaptation. CoRR, arXiv:1409.5241, 2014.434

166. Vittorio Ferrari and Andrew Zisserman. Learning visual attributes. In Annual Conference on435

Neural Information Processing Systems (NIPS), 2007.436

167. Michael Fink. Object classification from a single example utilizing class relevance pseudo-437

metrics. In Annual Conference on Neural Information Processing Systems (NIPS), 2004.438

168. Yoav Freund and Robert Schapire. A decision-theoretic generalization of on-line learning and439

an application to boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997.440

169. Andrea Frome, Greg S. Corrado, Jon Shlens, Samy Bengio, Jeff Dean, Marc’Aurelio Ranzato,441

and Tomas Mikolov. Devise: A deep visual-semantic embedding model. In Annual Conference442

on Neural Information Processing Systems (NIPS), 2013.443

170. Yanwei Fu, Timothy M. Hospedales, Tao Xiang, Zhengyong Fu, and Shaogang Gong. Trans-444

ductive multi-view embedding for zero-shot recognition and annotation. In European Con-445

ference on Computer Vision (ECCV), 2014.446

171. Yanwei Fu, Timothy M. Hospedales, Tao Xiang, and Shaogang Gong. Learning multi-447

modal latent attributes. Transactions of Pattern Recognition and Machine Analyses (PAMI),448

36(2):303–316, 2014.449

172. Yanwei Fu, Timothy M. Hospedales, Tao Xiang, and Shaogang Gong. Learning multi-450

modal latent attributes. Transactions of Pattern Recognition and Machine Analyses (PAMI),451

36(2):303–316, 2014.452

173. Zhenyong Fu, Tao Xiang, Elyor Kodirov, and Shaogang Gong. Zero-shot object recognition by453

semantic manifold distance. In IEEE Conference on Computer Vision and Pattern Recognition454

(CVPR), 2015.455

174. Adrien Gaidon and Eleonora Vig. Online domain adaptation for multi-object tracking. In456

BMVA British Machine Vision Conference (BMVC), 2015.457

175. Adrien Gaidon, Qiao Wang, Yohann Cabon, and Eleonora Vig. Virtual worlds as proxy for458

multi-object tracking analysis. In IEEE Conference on Computer Vision and Pattern Recog-459

nition (CVPR), 2016.460

176. Adrien Gaidon, Gloria Zen, and José A. Rodriguez-Serrano. Self-learning cam-461

era: Autonomous adaptation of object detectors to unlabeled video streams. CoRR,462

arXiv:1406.4296, 2014.463

177. Chuang Gan, Ming Lin, Yi Yang, Yueting Zhuang, and Alexander G. Hauptmann. Exploring464

semantic inter-class relationships (SIR) for zero-shot action recognition. In AAAI Conference465

on Artificial Intelligence (AAAI), 2015.466

178. Chuang Gan, Chen Sun, Lixin Duan, and Boqing Gong. Webly-supervised video recognition467

by mutually voting for relevant web images and web video frames. In European Conference468

on Computer Vision (ECCV), 2016.469

420546_1_En_BOOKBACKMATTER � TYPESET DISK LE � CP Disp.:25/5/2017 Pages: 354 Layout: T1-Standard

http://arxiv.org/abs/1409.5241
http://arxiv.org/abs/1406.4296


U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

330 References

179. Chuang Gan, Tianbao Yang, and Boqing Gong. Learning attributes equals multi-source470

domain generalization. In IEEE Conference on Computer Vision and Pattern Recognition471

(CVPR), 2016.472

180. Chuang Gan, Yi Yang, Linchao Zhu, Deli Zhao, and Yueting Zhuang. Recognizing an action473

using its name: A knowledge-based approach. International Journal of Computer Vision,474

pages 1–17, 2016.475

181. Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation.476

CoRR, arXiv:1409.7495, 2014.477

182. Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation.478

In International Conference on Machine Learning (ICML), 2015.479

183. Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle,480

François Laviolette, Mario Marchand, and Victor S. Lempitsky. Domain-adversarial train-481

ing of neural networks. Journal of Machine Learning Research, 2016.482

184. Jean-Luc Gauvain and Chin-Hui Lee. Maximum a posteriori estimation for multivariate483

gaussian mixture observations of markov chain. Transactions on Speech and Audio Process-484

ing, 2(2):291–298, 1994.485

185. Liang Ge, Jing Gao, Hung Ngo, Kang Li, and Aidong Zhang. On handling negative transfer486

and imbalanced distributions in multiple source transfer learning. In SIAM International487

Conference on Data Mining (SDM), 2013.488

186. Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics:489

The KITTI dataset. International Journal of Robotics Research, 32:1231–1237, 2013.490

187. Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving?491

the KITTI vision benchmark suite. In IEEE Conference on Computer Vision and Pattern492

Recognition (CVPR), 2012.493

188. Pascal Germain, Amaury Habrard, François Laviolette, and Emilie Morvant. A PAC-Bayesian494

approach for domain adaptation with specialization to linear classifiers. In International Con-495

ference on Machine Learning (ICML), 2013.496

189. Muhammad Ghifary, W. Bastiaan Kleijn, and Mengjie Zhang. Domain adaptive neural net-497

works for object recognition. CoRR, arXiv:1409.6041, 2014.498

190. Muhammad Ghifary, W. Bastiaan Kleijn, Mengjie Zhang, and David Balduzzi. Domain gen-499

eralization for object recognition with multi-task autoencoders. In IEEE International Con-500

ference on Computer Vision (ICCV), 2015.501

191. Muhammad Ghifary, W Bastiaan Kleijn, Mengjie Zhang, and David Balduzzi. Deep502

reconstruction-classification networks for unsupervised domain adaptation. In European Con-503

ference on Computer Vision (ECCV), 2016.504

192. Ross Girshick, Jeff Donahue, Trevor Darrell, and Jagannath Malik. Rich feature hierarchies505

for accurate object detection and semantic segmentation. In IEEE Conference on Computer506

Vision and Pattern Recognition (CVPR), 2014.507

193. Ross Girshick, Forrest Iandola, Trevor Darrell, and Jitendra Malik. Deformable part models508

are convolutional neural networks. In IEEE Conference on Computer Vision and Pattern509

Recognition (CVPR), 2015.510

194. Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Domain adaptation for large-scale sen-511

timent classification: A deep learning approach. In International Conference on Machine512

Learning (ICML), 2011.513

195. Daniel Goehring, Judy Hoffman, Erik Rodner, Kate Saenko, and Trevor Darrell. Interac-514

tive adaptation of real-time object detectors. In International Conference on Robotics and515

Automation (ICRA), 2014.516

196. Boqing Gong, Kristen Grauman, and Fei Sha. Connecting the dots with landmarks: Discrim-517

inatively learning domain invariant features for unsupervised domain adaptation. In Interna-518

tional Conference on Machine Learning (ICML), 2013.519

197. Boqing Gong, Kristen Grauman, and Fei Sha. Reshaping visual datasets for domain adapta-520

tion. In Annual Conference on Neural Information Processing Systems (NIPS), 2013.521

198. Boqing Gong, Kristen Grauman, and Fei Sha. Learning kernels for unsupervised domain522

adaptation with applications to visual object recognition. International Journal of Computer523

Vision, 109(1):3–27, 2014.524

420546_1_En_BOOKBACKMATTER � TYPESET DISK LE � CP Disp.:25/5/2017 Pages: 354 Layout: T1-Standard

http://arxiv.org/abs/1409.7495
http://arxiv.org/abs/1409.6041


U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

References 331

199. Boqing Gong, Jianzhuang Liu, Xiaogang Wang, and Xiaoou Tang. Learning semantic signa-525

tures for 3d object retrieval. Transactions on Multimedia, 15(2):369–377, 2013.526

200. Boqing Gong, Yuan Shi, Fei Sha, and Kristen Grauman. Geodesic flow kernel for unsupervised527

domain adaptation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),528

2012.529

201. Shaogang Gong, Marco Cristani, Shuicheng Yan, and Chen Change Loy. Person re-530

identification. Springer, 2014.531

202. Yunchao Gong, Qifa Ke, Michael Isard, and Svetlana Lazebnik. A multi-view embedding532

space for modeling internet images, tags, and their semantics. International Journal of Com-533

puter Vision, 106(2):210–233, 2014.534

203. Yunchao Gong, Liwei Wang, Ruiqi Guo, and Svetlana Lazebnik. Multi-scale orderless pool-535

ing of deep convolutional activation features. In European Conference on Computer Vision536

(ECCV), 2014.537

204. Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil538

Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Annual Confer-539

ence on Neural Information Processing Systems (NIPS), 2014.540

205. Raghuraman Gopalan. Learning cross-domain information transfer for location recognition541

and clustering. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),542

2013.543

206. Raghuraman Gopalan, Ruonan Li, and Rama Chellappa. Domain adaptation for object recog-544

nition: An unsupervised approach. In IEEE International Conference on Computer Vision545

(ICCV), 2011.546

207. Raghuraman Gopalan, Ruonan Li, and Rama Chellappa. Unsupervised adaptation across547

domain shifts by generating intermediate data representations. Transactions of Pattern Recog-548

nition and Machine Analyses (PAMI), 36(11), 2014.549

208. Albert Gordo, Jon Almazán, Jerome Revaud, and Diane Larlus. Deep image retrieval: Learning550

global representations for image search. In European Conference on Computer Vision (ECCV),551

2016.552

209. Philippe-Henri Gosselin, Naila Murray, Hervé Jégou, and Florent Perronnin. Revisiting the553

Fisher vector for fine-grained classification. Pattern Recognition Letters, 49(11):92–98, 2014.554

210. Kristen Grauman, Gregory Shakhnarovich, and Trevor Darrell. Inferring 3D structure with a555

statistical image-based shape model. In IEEE International Conference on Computer Vision556

(ICCV), 2003.557

211. Doug Gray, Shane Brennan, and Hai Tao. Evaluating appearance models for recognition,558

reacquisition, and tracking. In International Workshop on Performance Evaluation of Tracking559

and Surveillance (PETS), 2007.560

212. Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander561

Smola. A kernel two-sample test. Journal of Machine Learning Research, 13(1):723–773,562

2012.563

213. Arthur Gretton, Karsten M. Borgwardt, Malte J Rasch, Bernhard Schlkopf, and Alex J. Smola.564

A kernel method for the two sample problem. In Annual Conference on Neural Information565

Processing Systems (NIPS), 2007.566

214. Arthur Gretton, Alex Smola, Jiayuan Huang, Marcel Schmittfull, Karsten Borgwardt, and567

Bernhard Schölkopf. Covariate shift by kernel mean matching. In Joaquin Quiñonero Candela,568

Masashi Sugiyama, Anton Schwaighofer, and Neil D. Lawrence, editors, Dataset Shift in569

Machine Learning. The MIT Press, 2009.570

215. Gregory Griffin, Alex Holub, and Pietro Perona. Caltech-256 object category dataset. Tech-571

nical report, Californian Institute of Technologie, 2007.572

216. Matthieu Guillaumin, Daniel Küttel, and Vittorio Ferrari. Imagenet auto-annotation with seg-573

mentation propagation. International Journal of Computer Vision, 110(3):328–348, 2014.574

217. Ralf Haeusler and Daniel Kondermann. Synthesizing real world stereo challenges. In German575

Conference on Pattern Recognition (GCPR), 2013.576

218. Haltakov Haltakov, Christian Unger, and Slobodan Ilic. Framework for generation of syn-577

thetic ground truth data for driver assistance applications. In German Conference on Pattern578

Recognition (GCPR), 2013.579

420546_1_En_BOOKBACKMATTER � TYPESET DISK LE � CP Disp.:25/5/2017 Pages: 354 Layout: T1-Standard



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

332 References

219. Jihun Ham, Daniel D Lee, Sebastian Mika, and Bernhard Schölkopf. A kernel view of the580

dimensionality reduction of manifolds. In International Conference on Machine Learning581

(ICML), 2004.582

220. David J. Hand. Classifier technology and the illusion of progress. Statistical Science, 21:1–15,583

2006.584

221. Ankur Handa, Viorica Patraucean, Vijay Badrinarayanan, Simon Stent, and Roberto Cipolla.585

Synthcam3d: Semantic understanding with synthetic indoor scenes. CoRR, arXiv:1505.00171,586

2015.587

222. Ankur Handa, Viorica Patraucean, Vijay Badrinarayanan, Simon Stent, and Roberto Cipolla.588

Understanding real world indoor scenes with synthetic data. In IEEE Conference on Computer589

Vision and Pattern Recognition (CVPR), 2016.590

223. David R. Hardoon, Sandor Szedmak, and John Shawe-Taylor. Canonical correlation analy-591

sis: An overview with application to learning methods. Neurocomputing, 16(12):2639–2664,592

2004.593

224. Maayan Harel and Shie Mannor. Learning from multiple outlooks. In International Confer-594

ence on Machine Learning (ICML), 2011.595

225. Bharath Hariharan, Jitendra Malik, and Deva Ramanan. Discriminative decorrelation for clus-596

tering and classification. In European Conference on Computer Vision (ECCV), 2012.597

226. Adam W. Harley, Alex Ufkes, and Konstantinos G. Derpanis. Evaluation of deep convolutional598

nets for document image classification and retrieval. In International Conference on Document599

Analysis and Recognition (ICDAR), 2015.600

227. Richard Hartley, Jochen Trumpf, Yuchao Dai, and Hongdong Li. Rotation averaging. Inter-601

national Journal of Computer Vision, 103(3):267–305, 2013.602

228. Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning:603

Data Mining, Inference, and Prediction. Springer, 2009.604

229. Hironori Hattori, Vishnu Naresh Boddeti, Kris M. Kitani, and Takeo Kanade. Learning scene-605

specific pedestrian detectors without real data. In IEEE Conference on Computer Vision and606

Pattern Recognition (CVPR), 2015.607

230. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image608

recognition. CoRR, arXiv:1512.03385, 2015.609

231. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:610

Surpassing human-level performance on imagenet classification. In IEEE International Con-611

ference on Computer Vision (ICCV), 2015.612

232. Geoffrey E. Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.613

In NIPS Workshop on Deep Learning and Representation Learning, 2014.614

233. Martin Hirzer, Csaba Beleznai, Peter M. Roth, and Horst Bischof. Person re-identification by615

descriptive and discriminative classification. In Scandinavian Conference (SCIA), 2011.616

234. Frank Lauren Hitchcock. The expression of a tensor or a polyadic as a sum of products.617

Journal of Mathematics and Physics, 6(1):164–189, 1927.618

235. Judy Hoffman, Trevor Darrell, and Kate Saenko. Continuous manifold based adaptation for619

evolving visual domains. In IEEE Conference on Computer Vision and Pattern Recognition620

(CVPR), 2014.621

236. Judy Hoffman, Sergio Guadarrama, Eric S. Tzeng, Ronghang Hu, Jeff Donahue, Ross Gir-622

shick, Trevor Darrell, and Kate Saenko. LSDA: Large scale detection through adaptation. In623

Annual Conference on Neural Information Processing Systems (NIPS), 2014.624

237. Judy Hoffman, Saurabh Gupta, and Trevor Darrell. Learning with side information through625

modality hallucination. In IEEE Conference on Computer Vision and Pattern Recognition626

(CVPR), 2016.627

238. Judy Hoffman, Brian Kulis, Trevor Darrell, and Kate Saenko. Discovering latent domains for628

multisource domain adaptation. In European Conference on Computer Vision (ECCV), 2012.629

239. Judy Hoffman, Erik Rodner, Jeff Donahue, Trevor Darrell, and Kate Saenko. Efficient learning630

of domain-invariant image representations. In International Conference on Learning repre-631

sentations (ICLR), 2013.632

420546_1_En_BOOKBACKMATTER � TYPESET DISK LE � CP Disp.:25/5/2017 Pages: 354 Layout: T1-Standard

http://arxiv.org/abs/1505.00171
http://arxiv.org/abs/1512.03385


U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

References 333

240. Judy Hoffman, Eric Tzeng, Jeff Donahue, Yangqing Jia, Kate Saenko, and Trevor Darrell.633

One-shot adaptation of supervised deep convolutional models. CoRR, arXiv:1312.6204, 2013.634

241. Judy Hoffman, Eric Tzeng, Jeff Donahue, Yangqing Jia, Kate Saenko, and Trevor Darrell.635

One-shot adaptation of supervised deep convolutional models. In International Conference636

on Learning representations (ICLR), 2014.637

242. Alex Holub, Pietro Perona, and Michael C. Burl. Entropy-based active learning for object638

recognition. In CVPR Workshop on Online Learning for Classification (OLC), 2008.639

243. Jiayuan Huang, Alex Smola, Arthur Gretton, Karsten Borgwardt, and Bernhard Schölkopf.640

Correcting sample selection bias by unlabeled data. In Annual Conference on Neural Infor-641

mation Processing Systems (NIPS), 2007.642

244. Sheng Huang, Mohamed Elhoseiny, Ahmed Elgammal, and Dan Yang. Learning hypergraph-643

regularized attribute predictors. In IEEE Conference on Computer Vision and Pattern Recog-644

nition (CVPR), 2015.645

245. Sung Ju Hwang, Fei Sha, and Kristen Grauman. Sharing features between objects and their646

attributes. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011.647

246. Sung Ju Hwang and Leonid Sigal. A unified semantic embedding: Relating taxonomies and648

attributes. In Annual Conference on Neural Information Processing Systems (NIPS), 2014.649

247. Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network train-650

ing by reducing internal covariate shift. In International Conference on Machine Learning651

(ICML), 2015.652

248. Vidit Jain and Eric Learned-Miller. Online domain adaptation of a pre-trained cascade of653

classifiers. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011.654

249. Omar Javed, Saad Ali, and Mubarak Shah. Online detection and classification of moving655

objects using progressively improving detectors. In IEEE Conference on Computer Vision656

and Pattern Recognition (CVPR), 2005.657

250. Dinesh Jayaraman and Kristen Grauman. Zero-shot recognition with unreliable attributes. In658

Annual Conference on Neural Information Processing Systems (NIPS), 2014.659

251. Dinesh Jayaraman, Fei Sha, and Kristen Grauman. Decorrelating semantic visual attributes by660

resisting the urge to share. In IEEE Conference on Computer Vision and Pattern Recognition661

(CVPR), 2014.662

252. I-Hong Jhuo, Dong Liu, D.T. Lee, and Shih.-Fu. Chang. Robust visual domain adaptation with663

low-rank reconstruction. In IEEE Conference on Computer Vision and Pattern Recognition664

(CVPR), 2012.665

253. Shuiwang Ji and Jieping Ye. An accelerated gradient method for trace norm minimization. In666

International Conference on Machine Learning (ICML), 2009.667

254. Yangqing Jia, Mathieu Salzmann, and Trevor Darrell. Learning cross-modality similarity for668

multinomial data. In IEEE International Conference on Computer Vision (ICCV), 2011.669

255. Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick,670

Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature671

embedding. CoRR, arXiv:1408.5093, 2014.672

256. Wei Jiang, Eric Zavesky, Shih-Fu Chang, and Alex Loui. Cross-domain learning methods673

for high-level visual concept classification. In International Conference on Image Processing674

(ICIP), 2008.675

257. Thorsten Joachims. Transductive inference for text classification using support vector676

machines. In International Conference on Machine Learning (ICML), 1999.677

258. Jungseock Joo, Shuo Wang, and Song-Chun Zhu. Human attribute recognition by rich appear-678

ance dictionary. In IEEE International Conference on Computer Vision (ICCV), 2013.679

259. Ajay J Joshi, Fatih Porikli, and Nikolaos Papanikolopoulos. Multi-class active learning680

for image classification. In IEEE Conference on Computer Vision and Pattern Recognition681

(CVPR), 2009.682

260. Toshihiro Kamishima, Masahiro Hamasaki, and Shotaro Akaho. Trbagg: A simple trans-683

fer learning method and its application to personalization in collaborative tagging. In IEEE684

International Conference on Data Mining (ICDM), 2009.685

420546_1_En_BOOKBACKMATTER � TYPESET DISK LE � CP Disp.:25/5/2017 Pages: 354 Layout: T1-Standard

http://arxiv.org/abs/1312.6204
http://arxiv.org/abs/1408.5093


U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

334 References

261. Takafumi Kanamori, Shohei Hido, and Masashi Sugiyama. Efficient direct density ratio esti-686

mation for non-stationarity adaptation and outlier detection. Journal of Machine Learning687

Research, 10:1391–1445, 2009.688

262. Biliana Kaneva, Antonio Torralba, and William T. Freeman. Evaluating image features using689

a photorealistic virtual world. In IEEE International Conference on Computer Vision (ICCV),690

pages 2282–2289, 2011.691

263. Pichai Kankuekul, Aram Kawewong, Sirinart Tangruamsub, and Osamu Hasegawa. Online692

incremental attribute-based zero-shot learning. In IEEE Conference on Computer Vision and693

Pattern Recognition (CVPR), 2012.694

264. Ashish Kapoor, Kristen Grauman, Raquel Urtasun, and Trevor Darrell. Active learning with695

gaussian processes for object categorization. In IEEE International Conference on Computer696

Vision (ICCV), 2007.697

265. Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Sukthankar, and698

Li Fei-Fei. Large-scale video classification with convolutional neural networks. In IEEE699

Conference on Computer Vision and Pattern Recognition (CVPR), 2014.700

266. Robert E Kass and Paul W Vos. Geometrical foundations of asymptotic inference. Wiley. com,701

2011.702

267. Koray Kavukcuoglu, Marc’Aurelio Ranzato, and Yann LeCun. Fast inference in sparse coding703

algorithms with applications to object recognition. CoRR, arXiv:1010.3467, 2010.704

268. Aditya Khosla, Tinghui Zhou, Tomasz Malisiewicz, Alexei A. Efros, and Antonio Torralba.705

Undoing the damage of dataset bias. In European Conference on Computer Vision (ECCV),706

2012.707

269. Daniel Kifer, Shai Ben-David, and Johannes Gehrke. Detecting change in data streams. In708

International Conference on Very large Data Bases (VLDB), 2004.709

270. Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Interna-710

tional Conference on Learning representations (ICLR), 2015.711

271. Brendan F. Klare, Serhat S. Bucak, Anil K. Jain, and Tayfun Akgul. Towards automated712

caricature recognition. In International Conference on Biometrics (ICB), 2012.713

272. Adriana Kovashka, Devi Parikh, and Kristen Grauman. Whittlesearch: Image search with714

relative attribute feedback. In IEEE Conference on Computer Vision and Pattern Recognition715

(CVPR), 2012.716

273. Adriana Kovashka, Sudheendra Vijayanarasimhan, and Kristen Grauman. Actively selecting717

annotations among objects and attributes. In IEEE International Conference on Computer718

Vision (ICCV), 2011.719

274. Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz,720

Stephanie Chen, Yannis Kalantidis, Li-Jia Li, David A Shamma, Michael Bernstein, and721

Li Fei-Fei. Visual genome: Connecting language and vision using crowdsourced dense image722

annotations. CoRR, arXiv:1602:07332, 2016.723

275. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet classification with deep724

Convolutional Neural Networks. In Annual Conference on Neural Information Processing725

Systems (NIPS), 2012.726

276. Anders Krogh and Jesper Vedelsby. Neural network ensembles, cross validation, and active727

learning. In Annual Conference on Neural Information Processing Systems (NIPS), 1995.728

277. Roland Kuhn, Jean-Claude Junqua, Patrick Nguyenand, and Nancy Niedzielski. Rapid speaker729

adaptation in eigenvoice space. Transactions on Speech and Audio Processing, 8(6):695–707,730

2000.731

278. Brian Kulis, Kate Saenko, and Trevor Darrell. What you saw is not what you get: Domain732

adaptation using asymmetric kernel transforms. In IEEE Conference on Computer Vision and733

Pattern Recognition (CVPR), 2011.734

279. Abhishek Kumar and Hal Daumé III. Learning task grouping and overlap in multi-task learn-735

ing. In International Conference on Machine Learning (ICML), 2012.736

280. Neeraj Kumar, Alexander C. Berg, Peter N. Belhumeur, and Shree K. Nayar. Attribute and737

simile classifiers for face verification. In IEEE International Conference on Computer Vision738

(ICCV), 2009.739

420546_1_En_BOOKBACKMATTER � TYPESET DISK LE � CP Disp.:25/5/2017 Pages: 354 Layout: T1-Standard

http://arxiv.org/abs/1010.3467
http://arxiv.org/abs/1602:07332


U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

References 335

281. Abhijit Kundu, Yin F. Li, Daellert, Fuxin Li, and James M. Rehg. Joint semantic segmentation740

and 3D reconstruction from monocular video. In European Conference on Computer Vision741

(ECCV), 2014.742

282. Daniel Küttel and Vittorio Ferrari. Figure-ground segmentation by transferring window masks.743

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012.744

283. Shrenik Lad and Devi Parikh. Interactively guiding semi-supervised clustering via attribute-745

based explanations. In European Conference on Computer Vision (ECCV), 2014.746

284. Kevin Lai, Liefeng Bo, Xiaofeng Ren, and Dieter Fox. A large-scale hierarchical multi-view747

rgb-d object dataset. In International Conference on Robotics and Automation (ICRA), 2011.748

285. Kevin Lai and Dieter Fox. 3D laser scan classification using web data and domain adaptation.749

In Robotics: Science and Systems Conference (RSS), 2009.750

286. Kevin Lai and Dieter Fox. Object recognition in 3D point clouds using web data and domain751

adaptation. International Journal of Robotics Research, 29(8):1019–1037, 2010.752

287. Christoph H. Lampert, Hannes Nickisch, and Stefan Harmeling. Learning to detect unseen753

object classes by between-class attribute transfer. In IEEE Conference on Computer Vision754

and Pattern Recognition (CVPR), 2009.755

288. Gert Lanckriet, Nello Cristianini, Peter Bartlett, Laurent El Ghaoui, and Michael I. Jordan.756

Learning the kernel matrix with semidefinite programming. Journal of Machine Learning757

Research, 5:27–72, 2004.758

289. Hugo Larochelle, Dumitru Erhan, and Yoshua Bengio. Zero-data learning of new tasks. In759

AAAI Conference on Artificial Intelligence (AAAI), 2008.760

290. Ryan Layne, Timothy M. Hospedales, and Shaogang Gong. Re-id: Hunting attributes in the761

wild. In BMVA British Machine Vision Conference (BMVC), 2014.762

291. Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning763

applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.764

292. Christopher J. Leggetter and Philip C. Woodland. Maximum likelihood linear regression765

for speaker adaptation of continuous density hidden markov models. Computer Speech and766

Language, 9(2):171–185, 1995.767

293. Bastian Leibe and Bernt Schiele. Analyzing appearance and contour based methods for object768

categorization. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),769

2003.770

294. Anat Levin, Paul Viola, and Yoav Freund. Unsupervised improvement of visual detectors771

using co-training. In IEEE International Conference on Computer Vision (ICCV), 2013.772

295. Elizaveta Levina and Peter J. Bickel. Maximum likelihood estimation of intrinsic dimension.773

In Annual Conference on Neural Information Processing Systems (NIPS), 2004.774

296. Li-Jia Li, Hao Su, Li Fei-Fei, and Eric P Xing. Object bank: A high-level image representation775

for scene classification & semantic feature sparsification. In Annual Conference on Neural776

Information Processing Systems (NIPS), 2010.777

297. Ruonan Li and Todd Zickler. Discriminative virtual views for cross-view action recognition.778

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012.779

298. Wei Li and Xiaogang Wang. Locally aligned feature transforms across views. In IEEE Con-780

ference on Computer Vision and Pattern Recognition (CVPR), 2013.781

299. Wen Li, Lixin Duan, Dong Xu, and Iwor W. Tsang. Learning with augmented features for782

supervised and semi-supervised heterogeneous domain adaptation. Transactions of Pattern783

Recognition and Machine Analyses (PAMI), 36(6):1134–1148, 2014.784

300. Wenbin Li and Mario Fritz. Recognizing materials from virtual examples. In European Con-785

ference on Computer Vision (ECCV), 2012.786

301. Liang Liang and Kristen Grauman. Beyond comparing image pairs: Setwise active learning for787

relative attributes. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),788

2014.789

302. Xuejun Liao, Ya Xue, and Lawrence Carin. Logistic regression with an auxiliary data source.790

In International Conference on Machine Learning (ICML), 2005.791

303. Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,792

Piotr Dollár, and C.Lawrence Zitnick. Microsoft COCO: Common objects in context. In793

European Conference on Computer Vision (ECCV), 2014.794

420546_1_En_BOOKBACKMATTER � TYPESET DISK LE � CP Disp.:25/5/2017 Pages: 354 Layout: T1-Standard



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

336 References

304. Ming-Yu Liu and Oncel Tuzel. Coupled generative adversarial networks. In Annual Confer-795

ence on Neural Information Processing Systems (NIPS), 2016.796

305. Xiuwen Liu, Anuj Srivastava, and Kyle Gallivan. Optimal linear representations of images797

for object recognition. Transactions of Pattern Recognition and Machine Analyses (PAMI),798

26:662–666, 2004.799

306. Joan M. Llargues, Juan Peralta, Raul Arrabales, Manuel González, Paulo Cortez, and Antonio800

M. López. Artificial intelligence approaches for the generation and assessment of believable801

human-like behaviour in virtual characters. Expert Systems With Applications, 41(16):7281–802

7290, 2014.803

307. Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for seman-804

tic segmentation. In IEEE International Conference on Computer Vision (ICCV), 2015.805

308. Jonathan L. Long, Ning Zhang, and Trevor Darrell. Do convnets learn correspondence? In806

Annual Conference on Neural Information Processing Systems (NIPS), 2014.807

309. Mingsheng Long, Yue Cao, Jianmin Wang, and Michael I. Jordan. Learning transferable808

features with deep adaptation networks. In International Conference on Machine Learning809

(ICML), 2015.810

310. Mingsheng Long, Guiguang Ding, Jianmin Wang, Jiaguang Sun, Yuchen Guo, and Philip S.811

Yu. Transfer sparse coding for robust image representation. In IEEE Conference on Computer812

Vision and Pattern Recognition (CVPR), 2013.813

311. Mingsheng Long, Jianmin Wang, Guiguang Ding, Sinno Jialin Pan, and Philip S. Yu. Adap-814

tation regularization: a general framework for transfer learning. Transactions on Knowledge815

and Data Engineering, 5(26):1076–1089, 2014.816

312. Mingsheng Long, Jianmin Wang, Guiguang Ding, Jiaguang Sun, and Philip S. Yu. Trans-817

fer feature learning with joint distribution adaptation. In IEEE International Conference on818

Computer Vision (ICCV), 2013.819

313. Mingsheng Long, Jianmin Wang, Guiguang Ding, Jiaguang Sun, and Philip S. Yu. Transfer820

joint matching for unsupervised domain adaptation. In IEEE Conference on Computer Vision821

and Pattern Recognition (CVPR), 2014.822

314. Mingsheng Long, Jianmin Wang, and Michael I. Jordan. Deep transfer learning with joint823

adaptation networks. CoRR, arXiv:1605.06636, 2016.824

315. David G Lowe. Distinctive image features from scale-invariant keypoints. International Jour-825

nal of Computer Vision, 60(2):91–110, 2004.826

316. Ping Luo, Xiaogang Wang, and Xiaoou Tang. A deep sum-product architecture for robust827

facial attributes analysis. In IEEE International Conference on Computer Vision (ICCV),828

2013.829

317. Andy Jinhua Ma, Jiawei Li, Pong C. Yuen, and Ping Li. Cross-domain person reidentification830

using domain adaptation ranking svms. Transactions on Image Processing, 24(5):1599–1613,831

2015.832

318. Bingpeng Ma, Yu Su, and Frédéric Jurie. Local descriptors encoded by Fisher vectors for833

person re-identification. In ECCV Workshop on Re-Identification (Re-Id), 2012.834

319. Laurens van der Maaten, Minmin Chen, Stephen Tyree, and Kilian Weinberger. Learning with835

marginalized corrupted features. In International Conference on Machine Learning (ICML),836

2013.837

320. Dhruv Mahajan, Sundararajan Sellamanickam, and Vinod Nair. A joint learning framework838

for attribute models and object descriptions. In IEEE International Conference on Computer839

Vision (ICCV), 2011.840

321. Tomasz Malisiewicz, Abhinav Gupta, and Alexei A Efros. Ensemble of exemplar-svms for841

object detection and beyond. In IEEE International Conference on Computer Vision (ICCV),842

2011.843

322. Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. Domain adaptation: Learning844

bounds and algorithms. In Annual Conference on Learning Theory (COLT), 2009.845

323. Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. Domain adaptation with multiple846

sources. In Annual Conference on Neural Information Processing Systems (NIPS), 2009.847

420546_1_En_BOOKBACKMATTER � TYPESET DISK LE � CP Disp.:25/5/2017 Pages: 354 Layout: T1-Standard

http://arxiv.org/abs/1605.06636


U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

References 337

324. Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. Multiple source adaptation and848

the Rényi divergence. In Conference on Uncertainty in Artificial Intelligence (UAI), 2009.849

325. Javier Marín, David Vázquez, David Gerónimo, and Antonio M. López, López. Learning850

appearance in virtual scenarios for pedestrian detection. In IEEE Conference on Computer851

Vision and Pattern Recognition (CVPR), 2010.852

326. Francisco Massa, Bryan C. Russell, and Mathieu Aubry. Deep exemplar 2D-3D detection by853

adapting from real to rendered views. In IEEE Conference on Computer Vision and Pattern854

Recognition (CVPR), 2016.855

327. Giona Matasci, Michele Volpi, Mikhail Kanevski, Lorenzo Bruzzone, and Devis Tuia. Semi-856

supervised transfer component analysis for domain adaptation in remote sensing image clas-857

sification. Transactions on Geoscience and Remote Sensing, 53(7):3550–3564, 2015.858

328. Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer, Daniel Cremers, Alexey Dosovit-859

skiy, and Thomas Brox. A large dataset to train convolutional networks for disparity, optical860

flow, and scene flow estimation. In IEEE Conference on Computer Vision and Pattern Recog-861

nition (CVPR), 2016.862

329. Stephan Meister and Daniel Kondermann. Real versus realistically rendered scenes for optical863

flow evaluation. In ITG Conference on Electronic Media Technology (CEMT), 2011.864

330. Roland Memisevic and Geoffrey E. Hinton. Unsupervised learning of image transformations.865

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2007.866

331. Microsoft. Microsoft Research Cambridge Object Recognition Image Database. http://867

research.microsoft.com/en-us/downloads/b94de342-60dc-45d0-830b-9f6eff91b301/868

default.aspx, 2005.869

332. Stephen Milborrow, John Morkel, and Fred Nicolls. The MUCT Landmarked Face Database.870

In Annual Symposium of the Pattern Recognition Association of South Africa, 2010. http://871

www.milbo.org/muct.872

333. Erik G. Miller, Nicholas E. Matsakis, and Paul A. Viola. Learning from one example through873

shared densities on transforms. In IEEE Conference on Computer Vision and Pattern Recog-874

nition (CVPR), 2010.875

334. Fatemeh Mirrashed, Vlad I. Morariu, Behjat Siddiquie, Rogerio S. Feris, and Larry S. Davis.876

Domain adaptive object detection. In Workshops on Application of Computer Vision (WACV),877

2013.878

335. Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan879

Wierstra, and Martin Riedmiller. Playing Atari with deep reinforcement learning. In NIPS880

Workshop on Deep Learning, 2013.881

336. Roozbeh Mottaghi, Xianjie Chen, Xiaobai Liu, Nam-Gyu Cho, Seong-Whan Lee, Sanja882

Fidler, Raquel Urtasun, and Alan Yuille. The role of context for object detection and semantic883

segmentation in the wild. In IEEE Conference on Computer Vision and Pattern Recognition884

(CVPR), 2014.885

337. Yair Movshovitz-Attias, Takeo Kanade, and Yaser Sheikh. How useful is photo-realistic ren-886

dering for visual learning? CoRR, arXiv:1603.08152, 2016.887

338. Damian Mrowca, Marcus Rohrbach, Judy Hoffman, Ronghang Hu, Kate Saenko, and Trevor888

Darrell. Spatial semantic regularisation for large scale object detection. In IEEE International889

Conference on Computer Vision (ICCV), 2015.890

339. Krikamol Muandet, David Balduzzi, and Bernhard Schölkopf. Domain generalization via891

invariant feature representation. In International Conference on Machine Learning (ICML),892

2013.893

340. Kevin Murphy, Antonio Torralba, and William T. Freeman. Using the forest to see the trees:894

a graphical model relating features, objects, and scenes. In Annual Conference on Neural895

Information Processing Systems (NIPS), 2003.896

341. S. A. Nene, S. K. Nayar, and H. Murase. Columbia Object Image Library (COIL-20). Technical897

report, CUCS-005-96, February 1996.898

342. Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng.899

Reading digits in natural images with unsupervised feature learning. In NIPS Workshop on900

Deep Learning and Unsupervised Feature Learning (DLUFL), 2011.901

420546_1_En_BOOKBACKMATTER � TYPESET DISK LE � CP Disp.:25/5/2017 Pages: 354 Layout: T1-Standard

http://research.microsoft.com/en-us/downloads/b94de342-60dc-45d0-830b-9f6eff91b301/default.aspx
http://research.microsoft.com/en-us/downloads/b94de342-60dc-45d0-830b-9f6eff91b301/default.aspx
http://research.microsoft.com/en-us/downloads/b94de342-60dc-45d0-830b-9f6eff91b301/default.aspx
http://www.milbo.org/muct
http://www.milbo.org/muct
http://arxiv.org/abs/1603.08152


U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

338 References

343. Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee, and Andrew Y Ng.902

Multimodal deep learning. In International Conference on Machine Learning (ICML), 2011.903

344. Jie Ni, Qiang Qiu, and Rama Chellappa. Subspace interpolation via dictionary learning for904

unsupervised domain sadaptation. In IEEE International Conference on Computer Vision905

(ICCV), 2013.906

345. Li Niu, Wen Li, and Dong Xu. Visual recognition by learning from web data: A weakly907

supervised domain generalization approach. In IEEE Conference on Computer Vision and908

Pattern Recognition (CVPR), 2015.909

346. Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. Learning deconvolution network for910

semantic segmentation. In IEEE International Conference on Computer Vision (ICCV), 2015.911

347. David Novotny, Diane Larlus, and Andrea Vedaldi. I have seen enough: Transferring parts912

across categories. In BMVA British Machine Vision Conference (BMVC), 2016.913

348. Naveen Onkarappa and Angel D. Sappa. Synthetic sequences and ground-truth flow field914

generation for algorithm validation. Multimedia Tools and Applications, 74(9):3121–3135,915

2015.916

349. Maxime Oquab, Léon Bottou, Ivan Laptev, and Josef Sivic. Learning and transferring mid-917

level image representations using convolutional neural networks. In IEEE Conference on918

Computer Vision and Pattern Recognition (CVPR), 2014.919

350. Vicente Ordonez, Jia Deng, Yejin Choi, Alexander C. Berg, and Tamara L. Berg. From large920

scale image categorization to entry-level categories. In IEEE International Conference on921

Computer Vision (ICCV), 2013.922

351. Ivan V. Oseledets. Tensor-train decomposition. Journal on Scientific Computing, 33(5):2295–923

2317, 2011.924

352. Sakrapee Paisitkriangkrai, Chunhua Shen, and Anton van den Hengel. Learning to rank in925

person re-identification with metric ensembles. CoRR, arXiv:1503.01543, 2015.926

353. Mark Palatucci, Dean Pomerleau, Geoffrey E. Hinton, and Tom M. Mitchell. Zero-shot learn-927

ing with semantic output codes. In Annual Conference on Neural Information Processing928

Systems (NIPS), 2009.929

354. Sinno J. Pan, James T. Tsang, Ivor W.and Kwok, and Qiang Yang. Domain adaptation via930

transfer component analysis. Transactions on Neural Networks, 22(2):199–210, 2011.931

355. Sinno J. Pan and Qiang Yang. A survey on transfer learning. Transactions on Knowledge and932

Data Engineering, 22(10):1345–1359, 2010.933

356. Sinno Jialin Pan, Xiaochuan Ni, Jian-Tao Sun, Qiang Yang, and Zheng Chen. Cross-domain934

sentiment classification via spectral feature alignment. In International Conference on World935

Wide Web (WWW), 2010.936

357. Pau Panareda-Busto, Joerg Liebelt, and Juergen Gall. Adaptation of synthetic data for coarse-937

to-fine viewpoint refinement. In BMVA British Machine Vision Conference (BMVC), 2015.938

358. Jeremie Papon and Markus Schoeler. Semantic pose using deep networks trained on synthetic939

RGB-D. In IEEE International Conference on Computer Vision (ICCV), 2015.940

359. Devi Parikh and Kristen Grauman. Interactively building a discriminative vocabulary of name-941

able attributes. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),942

2011.943

360. Devi Parikh and Kristen Grauman. Relative attributes. In IEEE International Conference on944

Computer Vision (ICCV), 2011.945

361. Amar Parkash and Devi Parikh. Attributes for classifier feedback. In European Conference946

on Computer Vision (ECCV), 2012.947

362. Novi Patricia and Barbara Caputo. Learning to learn, from transfer learning to domain adapta-948

tion: A unifying perspective. In IEEE Conference on Computer Vision and Pattern Recognition949

(CVPR), 2014.950

363. Genevieve Patterson and James Hays. SUN attribute database: Discovering, annotating, and951

recognizing scene attributes. In IEEE Conference on Computer Vision and Pattern Recognition952

(CVPR), 2012.953

364. Xingchao Peng, Baochen Sun, Karim Ali, and Kate Saenko. Learning deep object detectors954

from 3D models. In IEEE International Conference on Computer Vision (ICCV), 2015.955

420546_1_En_BOOKBACKMATTER � TYPESET DISK LE � CP Disp.:25/5/2017 Pages: 354 Layout: T1-Standard

http://arxiv.org/abs/1503.01543


U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

References 339

365. Bojan Pepik, Michael Stark, Peter Gehler, and Bernt Schiele. Teaching 3D geometry to956

deformable part models. In IEEE Conference on Computer Vision and Pattern Recognition957

(CVPR), 2012.958

366. Florent Perronnin, Christopher Dance, Gabriela Csurka, and Marco Bressan. Adapted vocabu-959

laries for generic visual categorization. In European Conference on Computer Vision (ECCV),960

2006.961

367. Florent Perronnin, Yan Liu, Jorge Sánchez, and Hervé Poirier. Large-scale image retrieval with962

compressed Fisher vectors. In IEEE Conference on Computer Vision and Pattern Recognition963

(CVPR), 2010.964

368. Florent Perronnin, Jorge Sánchez, and Yan Liu. Large-scale image categorization with explicit965

data embedding. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),966

2010.967

369. Florent Perronnin, Jorge Sánchez, and Thomas Mensink. Improving the fisher kernel for968

large-scale image classification. In European Conference on Computer Vision (ECCV), 2010.969

370. Leonid Pishchulin, Arjun Jain, Mykhaylo Andriluka, Thorsten Thormahlen, and Bernt970

Schiele. Articulated people detection and pose estimation: reshaping the future. In IEEE971

Conference on Computer Vision and Pattern Recognition (CVPR), 2012.972

371. Leonid Pishchulin, Arjun Jain, Christian Wojek, Mykhaylo Andriluka, Thorsten Thormählen,973

and Bernt Schiele. Learning people detection models from few training samples. In IEEE974

Conference on Computer Vision and Pattern Recognition (CVPR), 2011.975

372. Peter Prettenhofer and Benno Stein. Cross-language text classification using structural cor-976

respondence learning. In Annual Meeting of the Association for Computational Linguis-977

tics(ACL), 2010.978

373. Amazon Mechanical Turk. http://www.mturk.com.979

374. Guo-Jun Qi, Charu Aggarwal, and Thomas Huang. Towards semantic knowledge propagation980

from text corpus to web images. In International Conference on World Wide Web (WWW),981

2011.982

375. Guo-Jun Qi, Charu Aggarwal, Yong Rui, Qi Tian, Shiyu Chang, and Thomas Huang. Towards983

cross-category knowledge propagation for learning visual concepts. In IEEE Conference on984

Computer Vision and Pattern Recognition (CVPR), 2011.985

376. Guo-Jun Qi, Xian-Sheng Hua, Yong Rui, Jinhui Tang, and Hong-Jiang Zhang. Two-986

dimensional active learning for image classification. In IEEE Conference on Computer Vision987

and Pattern Recognition (CVPR), 2008.988

377. Qiang Qiu, Vishal M. Patel, Pavan Turaga, and Rama Chellappa. Domain adaptive dictionary989

learning. In European Conference on Computer Vision (ECCV), 2012.990

378. Brian Quanz, Jun Huan, and Meenakshi Mishra. Knowledge transfer with low-quality data:991

A feature extraction issue. Transactions on Knowledge and Data Engineering, 24(10):1789–992

1802, 2012.993

379. Piyush Rai, Avishek Saha, Hal Daumé III, and Suresh Venkatasubramanian. Domain adap-994

tation meets active learning. In ACL Workshop on Active Learning for Natural Language995

Processing (ALNLP), 2010.996

380. Rajat Raina, Alexis Battle, Honglak Lee, Benjamin Packer, and Andrew Y. Ng. Self-taught997

learning: transfer learning from unlabeled data. In International Conference on Machine998

Learning (ICML), 2007.999

381. Anant Raj, Vinay P. Namboodiri Namboodiri, and Tinne Tuytelaars. Subspace alignment1000

based domain adaptation for rcnn detector. In BMVA British Machine Vision Conference1001

(BMVC), 2015.1002

382. Nikhil Rasiwasia, Jose Costa Pereira, Emanuele Coviello, Gabriel Doyle, Gert R. G. Lanckriet,1003

Roger Levy, and Nuno Vasconcelos. A new approach to cross-modal multimedia retrieval. In1004

ACM Multimedia, 2010.1005

383. Mohammad Rastegari, Abdou Diba, Devi Parikh, and Alireza Farhadi. Multi-attribute queries:1006

To merge or not to merge? In IEEE Conference on Computer Vision and Pattern Recognition1007

(CVPR), 2013.1008

420546_1_En_BOOKBACKMATTER � TYPESET DISK LE � CP Disp.:25/5/2017 Pages: 354 Layout: T1-Standard

http://www.mturk.com


U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

340 References

384. Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson. CNN Fea-1009

tures off-the-shelf: an Astounding Baseline for Recognition. CoRR, arXiv:1403.6382, 2014.1010

385. Douglas A. Reynolds, Thomas F. Quatieri, and Robert B. Dunn. Speaker verification using1011

adapted Gaussian Mixture Models. Digital Signal Processing, 10(1):19–41, 2000.1012

386. Stephan R. Richter, Vibhav Vineet, Stefan Roth, and Vladlen Koltun. Playing for data: Ground1013

truth from computer games. In European Conference on Computer Vision (ECCV), 2016.1014

387. Stephan R. Richter, Vibhav Vineet, Stefan Roth, and Koltun Vladlen. Playing for data: Ground1015

truth from computer games. In European Conference on Computer Vision (ECCV), 2016.1016

388. Erik Rodner and Joachim Denzler. Learning with few examples by transferring feature rele-1017

vance. In BMVA British Machine Vision Conference (BMVC), 2009.1018

389. Erik Rodner, Judy Hoffman, Jeff Donahue, Trevor Darrell, and Kate Saenko. Towards adapt-1019

ing imagenet to reality: Scalable domain adaptation with implicit low-rank transformations.1020

CoRR, arXiv:1308.4200, 2013.1021

390. José A. Rodríguez-Serrano, Harsimrat Sandhawalia, Raja Bala, Florent Perronnin, and Craig1022

Saunders. Data-driven vehicle identification by image matching. In ECCV Workshop on Com-1023

puter Vision in Vehicle Technologies: From Earth to Mars (CVVT), 2012.1024

391. José A. Rodríguez-Serrano, Florent Perronnin, Gemma Sánchez, and Josep Lladós. Unsu-1025

pervised writer adaptation of whole-word HMMs with application to word-spotting. Pattern1026

Recognition Letters, 31(8):742–749, 2010.1027

392. Marcus Rohrbach, Sandra Ebert, and Bernt Schiele. Transfer learning in a transductive setting.1028

In Annual Conference on Neural Information Processing Systems (NIPS), 2013.1029

393. Marcus Rohrbach, Michael Stark, György Szarvas, Iryna Gurevych, and Bernt Schiele. What1030

helps where – and why? semantic relatedness for knowledge transfer. In IEEE Conference on1031

Computer Vision and Pattern Recognition (CVPR), 2010.1032

394. Bernardino Romera-Paredes, Hane Aung, Nadia Bianchi-Berthouze, and Massimiliano Pontil.1033

Multilinear multitask learning. In International Conference on Machine Learning (ICML),1034

2013.1035

395. German Ros, Sebastian Ramos, Manuel Granados, Amir H. Bakhtiary, dAVID Vázquez, and1036

Antonio M. López. Vision-based offline-online perception paradigm for autonomous driving.1037

In Winter Conference on Applications of Computer Vision (WACV), 2015.1038

396. German Ros, Laura Sellart, Joanna Materzyńska, David Vázquez, and Antonio M. López.1039
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