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© Domain adaptation is a central challenge in machine

learning.

© Inreal scenarios, domain adaptation frequently involves
source domains with internal hierarchical structures (e.g.,
phylogenetic branching, evolutionary progression of
languages).

© Multi-source domain adaptation is a well-studied
approach for this type of problem.

— However, hierarchical adaptation of the source domain
remains a less researched area.



Research Hypothesis

Context: Many real-world datasets are hierarchically
organized, with abundant data at higher levels and scarce data
at lower levels.

Hypothesis: Given hierarchically structured data, how can
knowledge be effectively transferred from data-rich higher levels to
data-scarce lower levels?



Related Work

Hierarchical Domain Adaptation

* Mind the Gap: Subspace based HDA [Rqj et al., 2014]
e HDA with local feature patterns [Wen et al., 2022]
e Efficient HDA for PLM [Chronopoulou et al., 2022]



Proposed method — data structure
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Hierarchical structure example: Branch; could represent the source domain (Ds),
while Leafs serves as the target domain (D).



Proposed method - total cost

The total cost, denoted as Weighted Cross Entropy Loss
(WCEL), is defined as follows:
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Case study: Epitope prediction

Hierarchical data in a phylogenetic structure.

Epitope identification is crucial for diagnostics (early disease
detection), immunotherapy (personalised treatments), and
immunisation (vaccine design).

ML and DL are now standard
approaches.

Image by Jodie Ashford/BioRender



Related Work

o Organism-Speciﬁc [Ashford et al., 2021]
* EpitopeVec [Bahai et al., 2021]

d EplDope [Collatz et al., 2020]
e ESM-2 [Lin et al., 2023]

¢ BepiPred-3.0 [Clifford et al., 2022]



Single Domain Adaptation
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Figure: Submitted to Genomics, Proteomics & Bioinformatics (Impact Factor: 11.5) — under review



Results — Single Domain Adaptation (SDA)

Metrics: AUC, BACC, F1, MCC, NPV, PPV, Sensitivity,
Specificity — Wilcoxon test with FDR correction

© 20 datasets; compared models: BepiPred 3, EpiDope,
EpitopeVec, ESM-2, NPTransfer.

© EpitopeTransfer significantly outperformed most
predictors on key metrics (AUC, BACC, F1, MCC), with
some exceptions in PPV and Sensitivity

© Filoviridae (MCC = 0.76) and Plasmodium falciparum
(MCC = 0.50) showed strong performance.

© No significant difference between ESM-1b and ESM-2.
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Hierarchical Domain Adaptation

© Datasets: B. pertussis, E. coli, and M. tuberculosis
© Trainable layers: 4
© Number of trials: 5
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Figure: ESM-2 with 6 Transformer encoder layers and 8M parameters
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Results — Hierarchical Domain Adaptation (HDA)

Metrics: AUC, BACC, F1, MCC, NPV, PPV, Sensitivity,
Specificity — Wilcoxon test with FDR correction

©
©

ESM2-8M
17 datasets; baseline ignores hierarchy.

EpitopeTransfer significantly outperformed the baseline on
most metrics except PPV and Specificity.

Filoviridae (MCC = 0.595) and Mononegavirales (MCC =
0.483) showed strong performance.
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© HDA-8M vs. SDA-8M Performance: HDA-8M showed
numerical gains over SDA-8M in almost all metrics, except
Specificity. But only AUC gain was statistically significant
(p = 0.0109, median diff = 0.039).

© Data Constraint: HDA relied on subsampled data due to
resource limits — results may underrepresent full
hierarchy.

© SDA Weaknesses: Underperformed for SARS-CoV-2
(MCC=0.043 vs 0.169 baseline) and M. tuberculosis
(MCC=-0.031 vs 0.039 baseline).
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© LayoutQT - Published in Engineering Applications of
Artificial Intelligence - 2023 (Qualis A1) [de Lucena
Drumond et al., 2023].

© EpitopeTransfer — Submitted to Genomics, Proteomics &
Bioinformatics - 2024 (Impact Factor: 11.5) — under review.
Preprint: [Leite et al., 2025].

© Extended abstract — Selected for oral presentation at the
International Conference on Intelligent Systems for Molecular
Biology [ISMB/ECCB, 2025].

© Book Chapter - Invited contribution to Artificial Neural
Networks, 4th ed. (Methods in Molecular Biology series).

© Hierarchical Domain Adaptation — New article in

preparation.
14



© Improve optimization by refining stopping criteria to better
prevent overfitting across taxa.

© Extend HDA to fully unsupervised scenarios without
target domain labels.

© Add interpretability methods to highlight input regions
influencing predictions.
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