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Abstract

Domain adaptation aims to enable classifiers trained on a source domain to perform
effectively on a target domain. Single domain adaptation methods are typically designed
to transfer knowledge from a single source domain, where all observations are implicitly
assumed to bear the same level of relationship to the target domain. However, in real
scenarios, domain adaptation frequently involves source domains with internal, often
hierarchical, structures. For instance, this occurs in phylogenetic branching in biological
datasets, the evolutionary progression of languages, interconnected thematic structures
in scientific literature, offensive language identification, and fact-checking. A common
yet simplistic strategy is to merge these sources into a single domain. However, this
strategy neglects the distinct relationships between individual sources and the target
domain and also noisy data in multi-level source domain. Creating a unified source
dataset for this heterogeneous collection can eliminate the informative characteristics of
individual domains and may result in negative transfer effects. Although multi-source
domain adaptation is a well-studied approach for this type of problem, less research has
been conducted when the source domains have hierarchical relationships.

This thesis investigates the hierarchical relationships of source domains to enhance
predictions at the target domain level. Specifically, the proposed method captures the
hierarchical relationships and their relative importance across different levels, improving
the adaptability of neural language models. By explicitly modeling these hierarchical
dependencies, the method enhances the model’s ability to generalize throughout diverse
hierarchical levels, ensuring more accurate predictions at the target level. To demonstrate
its efficiency, the method is applied to a case study on epitope prediction, a critical prob-
lem in immunoinformatics. Experimental results reveal significant performance gains,
which outperforms three state-of-the-art methods in identifying linear B-cell epitopes

(LBCE), as evaluated across eight different metrics.

Keywords: Hierarchical Domain Adaptation, Neural Language Models.
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Resumo Expandido

A adaptacao de dominio tem como objetivo permitir que classificadores treinados em um
dominio de origem tenham um bom desempenho em um dominio-alvo. Tradicionalmente,
métodos de adaptagdo consideram um dominio de origem tinico, no qual todas as obser-
vacgoes assumem implicitamente o mesmo nivel de relacionamento com o dominio-alvo.
Entretanto, em cenarios reais, a adaptagao de dominio frequentemente envolve dominios
de origem com estruturas internas, muitas vezes hierdrquicas. Exemplos incluem rami-
ficacoes filogenéticas em conjuntos de dados bioldgicos, evolucao das linguas, estruturas
tematicas interconectadas na literatura cientifica, identificacdo de linguagem ofensiva e
verificacao de fatos. Uma estratégia comum, porém simplista, é mesclar fontes heterogé-
neas em um unico dominio. Essa abordagem negligencia as relacoes distintas entre fontes
individuais e o dominio-alvo, além de introduzir ruidos que prejudicam a transferéncia.
Criar um conjunto de dados unificado para uma colegdo heterogénea pode eliminar infor-
macoes criticas, resultando em efeitos negativos de transferéncia. Embora a adaptacao
de dominio com muiltiplas fontes seja amplamente estudada, pouca pesquisa aborda ex-
plicitamente adaptacoes que consideram estruturas hierarquicas internas nos dominios de
origem.

Esta tese investiga as relagoes hierarquicas entre os dominios de origem por meio de
uma adaptagao de dominio hierarquica, que captura explicitamente dependéncias hierar-
quicas para aprimorar a generalizacao e precisao das predi¢oes no nivel do dominio-alvo.
O método proposto emprega uma Hierarchical Weighted Cross-Entropy Loss, que ajusta
dinamicamente a contribuicao relativa dos diferentes niveis hierarquicos, e corrige desba-
lanceamentos entre classes. Essa estratégia permite uma transferéncia de conhecimento
mais robusta e adaptavel, especialmente adequada para cenarios com poucos dados rotu-
lados e estruturas hierarquicas de varios niveis.

Para contextualizar esta proposta, a tese revisa inicialmente a evolucao dos modelos
de linguagem: desde n-gramas e modelos ocultos de Markov (HMMs), passando por re-
des neurais recorrentes (RNNs, LSTMs e GRUs), até arquiteturas modernas baseadas em
atencao, como Transformers. O surgimento de modelos pré-treinados, como BERT, GPT

e RoBERTa, revolucionou o processamento de linguagem natural, enquanto sua adap-
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tagdo para sequéncias biolégicas resultou em modelos como ESM, ProtBERT, ProtT5,
ProteinBERT e Ankh. Apesar dos avancos, persistem limitagoes relevantes, como o viés
nos dados, especialmente em cenarios com escassez de dados rotulados no dominio-alvo.
Essas limitagoes reforcam a necessidade de métodos robustos de adaptagdo de dominio,
particularmente em contextos com varios niveis hierarquicos.

Este trabalho também apresenta conceitos fundamentais relacionados a adaptacao de
dominio, destacando métodos tradicionais baseados em discrepancia, métodos adversari-
ais, métodos de reconstrucao e abordagens de normalizagdo. Cada técnica busca reduzir
a diferenca entre dominios com graus variados de robustez, estabilidade e aplicabilidade.
Adicionalmente, sao abordados os regimes de supervisao, incluindo adaptacao supervisi-
onada, semi-supervisionada e nao supervisionada.

A tese também discute a adaptacao de multiplas fontes, destacando tanto beneficios
quanto desafios dessa abordagem, como transferéncia negativa e maior custo computa-
cional. Finalmente, é aprofundada a adaptacao de dominio hierarquica, que aproveita
explicitamente estruturas hierarquicas dos dados para realizar adaptagoes considerando
o grau de importancia de cada nivel superior.

Para validar a proposta, foi realizado um estudo de caso focado na predigao de epi-
topos de células B lineares (LBCE), uma tarefa critica na imunoinformatica devido a
importancia de epitopos em diagnésticos, vacinas e imunoterapias. Inicialmente, uma
abordagem de adaptacdo de dominio de fonte tinica foi aplicada a tarefa de predicao de
epitopos, validando a capacidade de transferéncia filogenética. Em seguida, a solucao
foi generalizada por meio do método de adaptacao de dominio hierdrquica proposto, que
ajusta dinamicamente a contribui¢ao dos exemplos de treinamento com base na estrutura
hierarquica dos dados.

Os resultados experimentais demonstraram ganhos de desempenho na tarefa de pre-
dicdo de epitopos lineares de células B. Na configuracdo de adaptagao de dominio de
fonte unica (Single-Source Domain Adaptation), o método proposto EpitopeTransfer
superou consistentemente trés métodos estado da arte — BepiPred 3.0, EpiDope e Epi-
topeVec — além de duas baselines internas. A avaliagdo foi conduzida em um conjunto
de 20 dominios-alvo, utilizando oito métricas distintas: AUC, Fl-score, coeficiente de
correlagdo de Matthews (MCC), acurdcia balanceada (BACC), valor preditivo positivo
(PPV), valor preditivo negativo (NPV), sensibilidade e especificidade.

O EpitopeTransfer obteve AUC média de 0,690 + 0,029, Fl-score de 0,592 + 0,060
e MCC de 0,258 + 0,052, demonstrando superioridade substancial em relacao aos con-
correntes. Além disso, atingiu sensibilidade de 0,697 + 0,068 e especificidade de 0,549
+ 0,072, evidenciando sua capacidade de generalizar tanto para regides epitopos quanto

nao epitopos.



Adicionalmente, ao aplicar a estratégia proposta de adaptacao de dominio hierarquica
(Hierarchical Domain Adaptation), observou-se desempenho consistentemente superior ao
da baseline em 17 dominios-alvo distintos. O modelo generalizado alcancou AUC média
de 0,698 + 0,027, superando os 0,625 4+ 0,033 da baseline. Também apresentou ganhos
em Fl-score (0,549 + 0,053 vs. 0,454 + 0,056) e MCC (0,249 + 0,044 vs. 0,154 + 0,039).

Palavras-chave: Adaptacao de Dominio Hierdrquica, Modelos de Linguagem Neural.
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Chapter 1

Introduction

1.1 Motivation

Transferring knowledge across domains is a central challenge in machine learning, partic-
ularly when the target domain offers limited labeled data [Ben-David et al., 2010, Pan
and Yang, 2010]. Traditional domain adaptation methods often assume a single source
domain. However, in many real-world scenarios, there are multiple source of domains,
each contributing distinct and complementary information [Guo et al., 2020]. To address
this setting, a technique known as multi-source domain adaptation (MSDA) leverages the
diversity of multiple domains, enabling models to utilize a broader range of patterns and
knowledge. By aggregating information from various sources, MSDA has shown signifi-
cant improvements in tasks where a single source domain may fail to generalize to the
target domain. Nevertheless, MSDA introduces additional challenges, such as manag-
ing diverse labeled sources and addressing the shift between source and target domains
[Nguyen et al., 2021].

Although MSDA has demonstrated promise in various applications [Guo et al., 2018],
a less investigated scenario emerges when the source domains follow a hierarchical organi-
zation. In such a hierarchy, higher-level domains encompass broader or more general infor-
mation with abundant data, whereas lower-level domains contain more specific knowledge
and fewer labeled instances. For example, in biological datasets arranged according to
a phylogenetic tree, higher taxonomic ranks (e.g., Phylum, Class) aggregate substantial
information about evolutionary relationships and tend to be data-rich. Conversely, lower
taxonomic ranks (e.g., Genus, Species) capture more specialized features but typically
have fewer labeled samples. This hierarchical structure reflects the evolutionary lineage
of organisms, making it a candidate for knowledge transfer through hierarchical domain
adaptation, where information from higher-level domains can be leveraged to improve

learning in more specific, data-scarce lower-level domains.



This thesis is centered on Hierarchical Domain Adaptation in Neural Language Models,
a specialized form of MSDA in which source domains are organized hierarchically. It
addresses the key research question: Given data that is hierarchically structured,
how can knowledge be effectively transferred from higher levels, where data

is abundant, to lower levels, where data is scarce?

1.2 Contributions

This work advances the study of Hierarchical Domain Adaptation (HDA) in Neural Lan-
guage Models (NLMs) by introducing a novel approach that captures and utilizes hierar-
chical relationships among domains. It specifically addresses the challenge of leveraging
hierarchical relationships among domains to enhance knowledge transfer, particularly in
scenarios where the target domain has limited labeled data.

The contributions of this work can be summarized as follows:

o Hierarchical Domain Adaptation Method: A method for Hierarchical Do-
main Adaptation in Neural Language Models is introduced. This method enables
smoother adaptation across hierarchical levels, mitigating negative transfer effects
and enhancing predictive performance in data-scarce lower levels. As part of this
approach, a Hierarchical Weighted Cross-Entropy Loss is proposed, incorporating
hierarchical weights to dynamically adjust the contribution of higher-level data.
Additionally, the loss function applies weighting strategies to balance the exposure
to positive and negative samples throughout the hierarchy, mitigating potential

biases that could impact model generalization.

« Application to Epitope Prediction: The proposed method is applied to an epi-
tope prediction task and outperforms three state-of-the-art baselines across eight
evaluation metrics. Identifying epitopes is a crucial step in a broad range of medi-
cal and immunological applications, including vaccines [Hamley, 2022], therapeutic

antibodies [Sun et al., 2024], and immunodiagnostics [Mucci et al., 2017].

The proposed method can be applied to a wide range of tasks, including but not lim-
ited to, Phylogenetic Branching in Biological Datasets [Campelo et al., 2024], The Evo-
lutionary Progression of Languages [Gray and Atkinson, 2003], Interconnected Thematic
Structures in Scientific Literature [Tang et al., 2008|, Offensive Language Identification
[Rosenthal et al., 2021], and Fact Checking [Thorne et al., 2018].

While the method is inherently designed for hierarchical datasets, it also accommo-

dates cases where data lacks an explicit hierarchy but can be structured accordingly. This



flexibility enables its application to tasks where hierarchical relationships are not initially

present but can be leveraged to enhance learning.

1.3 Thesis Organization

The remainder of this thesis is structured as follows: Chapter 2 outlines the development
of language models, from early statistical approaches to modern Transformers. Chap-
ter 3 describes domain adaptation techniques, from traditional methods to hierarchical
approaches. Chapter 4 provides the background for the chosen case study on B-cell epi-
tope prediction, detailing the biological, computational, and taxonomic aspects relevant
to the application of the proposed method. Chapter 5 presents a detailed description
of the proposed method, providing an explanation of the approach developed for this
research. Chapter 6 shows the results obtained by applying the proposed method in two
distinct scenarios: single domain adaptation and hierarchical domain adaptation. Finally,
Chapter 7 discusses the findings in relation to the research questions, limitations, and

proposes directions for future work.



Chapter 2

Language Models

2.1 Introduction

This chapter explores the evolution of language models, from early n-gram models to mod-
ern transformer-based architectures. It examines the transition from statistical methods
to neural network-based approaches, including RNNs, LSTMs, and GRUs, which im-
proved sequential text processing. A significant breakthrough came with the introduc-
tion of self-attention mechanisms, laying the foundation for transformer models such as

BERT, which are now among the most widely used in natural language processing.

2.2 The History of Language Models

Human languages are composed of discrete symbols such as words and characters [Man-
ning and Schiitze, 1999]. These symbols must be converted into continuous numerical
representations for computers to process and understand their meanings. This conversion
is essential because computers operate on numerical data. Without this transformation,
the semantic richness of language cannot be captured [Bengio et al., 2000, Mikolov et al.,
2013]. One of the primary challenges in this transformation process is the complexity and
variability of human language. Language is infinitely flexible and constantly evolving, ca-
pable of generating an endless number of unique sentences, each with its own nuances
and context. This makes it impossible for a computer to exhaustively calculate or store
all possible linguistic combinations [Jurafsky and Martin, 2025, Manning and Schiitze,
1999]. To address this challenge, a wide range of language models have been developed,

evolving from early statistical methods to advanced neural approaches.



2.2.1 Statistical Language Models
Early Language Models: N-Grams

Statistical language modeling aims to learn the joint or conditional probability distri-
bution over sequences of words [Bengio et al., 2000]. In traditional statistical language
models, such as the n-gram model, the probability of a word is estimated based on its
frequency following a specific context in the corpus. Thus, the probability of a sentence is
decomposed into the product of conditional probabilities of each word given its preceding
words [Jurafsky and Martin, 2025].

The concept of n-grams has its roots in Claude Shannon’s work in 1948, where he
explored the statistical structure of language through the joint probability of consecutive
symbols in communication systems [Shannon, 1948]. While n-grams were not explic-
itly formalized in Shannon’s work, his exploration laid the groundwork for probabilistic
approaches to language modeling. The application of n-gram language models gained sig-
nificant attention in the 1970s, particularly through the work of Frederick Jelinek and his
team, who applied statistical models to speech recognition [Jelinek, 1976]. In the subse-
quent decades, numerous advancements were made to refine and expand n-gram modeling
techniques, enabling their application across diverse domains, including natural language
processing, machine translation, and information retrieval [Goodman, 2001].

The Unigram model is one of the simplest statistical language models, where the
occurrence of each word in a sentence is considered independent of other words. This
model calculates the probability of a sentence by multiplying the individual probabilities
of each word, ignoring any contextual information. For example, consider the sentence
“Brazil is beautiful”. The Unigram model would estimate the probability of this sentence

as:

P(Brazil is beautiful) = P(Brazil) x P(is) x P(beautiful)

Here, the probability of each word is determined by its frequency in a large corpus.
While this model is computationally simple and efficient, it fails to account for the re-
lationships between words, which are crucial for understanding the structure of natural
language.

The N-Gram model builds on the Unigram model by considering the relationship
between words. Specifically, it assumes that the probability of a word depends on the
N — 1 words that precede it, a principle known as the Markov assumption [Jurafsky and
Martin, 2025]. For example, in a bigram model (N = 2), the probability of the entire

sentence “Brazil is beautiful” would be estimated as:



P(Brazil is beautiful) ~ P(Brazil) x P(is | Brazil) x P(beautiful | is)

This model is more effective than the Unigram model at capturing the context and
structure of language, making it a more powerful tool for natural language processing
tasks. Thus, the generalization of the joint probability for a sequence of n 4+ 1 words can

be expressed as the product of all the bigram conditional probabilities:

P(wy : wy,) =~ P(wg) - P(wy | wp) ...  Plwy, | wy—1) = ﬁ P(w; | wi—1)

i=1

However, a challenge arises when the model encounters words that it has not seen be-
fore, especially in new domains. This issue, known as the Out of Vocabulary (OOV)
problem, requires a strategy to ensure that the model can still perform effectively [Ju-
rafsky and Martin, 2025]. To address this, an open vocabulary approach is typically used,
where a placeholder token, represented as <UNK>, is introduced to replace any unknown
words. This approach helps the model manage words it has not encountered during train-
ing. Specifically, low-frequency words in the training corpus are replaced with the <UNK>
token, based on the assumption that words that are rare in the training data are more
likely to be unknown in future contexts. By incorporating <UNK> into the n-grams, the
model can estimate probabilities for sequences that include unknown words, allowing it
to better generalize to new domains where it may encounter words outside of its original
vocabulary [Chen and Goodman, 1999].

Limitations. There are several limitations associated with building more powerful
language models. First, creating a robust model requires a significantly larger training
corpus to effectively model a wide range of n-grams. However, this often leads to the
issue of the curse of dimensionality, where the model becomes increasingly complex and
difficult to manage [Bengio et al., 2000]. Second, adapting these models to new domains
can be challenging. Since the model relies heavily on the statistical patterns learned
from the training data, it may struggle in domains where large training corpora are not
available. In such cases, the model’s performance tends to degrade [Bellegarda, 2004].
Additionally, simply increasing the size of the training corpus does not always result in
better performance. Real-world test corpora frequently contain words and phrases that
were not included in the original vocabulary, making it difficult for n-gram models to

generalize across diverse test domains [Brants et al., 2007].

Hidden Markov Model

The Hidden Markov Model (HMM) is a probabilistic framework commonly used to model

sequential data. It consists of two main components: a hidden Markov chain that repre-



sents an underlying sequence of states and a set of observation probability distributions
associated with each state. At each step in the sequence, the model is assumed to be
in one of these hidden states, which cannot be observed directly. Instead, an observable
event or output is generated according to the probability distribution linked to the cur-
rent hidden state. If the set of possible observations is finite, the HMM is referred to as
discrete; if the observations can take any value, such as when generated by continuous
probability distributions, it is called continuous [Rabiner, 1989].

The HMM'’s ability to model complex real-world phenomena through a sequence of
hidden states and observable events has been well-established both theoretically and em-
pirically [Rabiner, 1989]. When equipped with an adequate number of states and sufficient
data, HMMs can capture the underlying probability distributions of complex processes,
leading to simple yet powerful models. This strength is reflected in their widespread
adoption as the foundation for developing automated speech recognition (ASR) systems,
which are deployed in various practical applications [Rabiner, 1989]. Beyond speech
recognition, HMMs have also proven their versatility in other fields, such as bioinfor-
matics [Eddy, 1998], computer vision [Caelli and McCane, 2003], and other areas within
natural language processing [Gao and Zhu, 2013].

Modeling Sequential Data

In the context of Natural Language Processing (NLP), HMMs play a important role in
various tasks. They are applied to word prediction, part-of-speech tagging, and have been
a foundational approach in the development of automated speech recognition systems
[Rabiner, 1989]. These models are particularly effective in handling sequential data,
where the underlying sequence of hidden states (such as parts of speech) can be inferred
to predict the next word or phrase based on the previous context, making them powerful
tools for various NLP applications [Jurafsky and Martin, 2025]. For instance, consider the
sentence: “Brazil won the match.” The goal is to determine the most probable sequence
of parts of speech (POS) ! for this sentence using HMM. A possible sequence of states
could be:

« Brazil — Noun (NOUN)
« won — Verb (VERB)
« the — Article (ART)
« match — Noun (NOUN)

IParts of speech (POS) are categories of words based on their grammatical roles in a sentence, such
as nouns, verbs, adjectives, and adverbs. These categories help in syntactic and semantic analysis of
language. For more information, see [Jurafsky and Martin, 2025].

7



In this context, the HMM is defined by two key components:

1. Transition Probability (A): The probability of transitioning from one state (part
of speech) to another. For example, the probability that a Noun (NOUN) is followed
by a Verb (VERB) can be expressed as:

P(Current State | Previous State)

or more formally:
Aij =P(s;=j|s-1=1)

where:

« s;: Represents the state (part of speech) at time ¢t. For example, this could be
a NOUN, VERB, or other part of speech for the current word.

« i: Represents the state (part of speech) at time ¢ — 1, i.e., the previous state.

 j: Represents the state (part of speech) at time ¢, i.e., the current state.

2. Emission Probability (B): The probability of a specific word being generated
given a state (part of speech). For example, the probability that the word “Brazil”
is emitted given that the state is Noun (NOUN):

Bj(o) = Plot | st = j)
where o; represents the observed word at time ¢.

Given a sequence of observed words O = {o01,09,...,0r} (e.g., “Brazil won the
match”), the goal of the HMM is to find the most likely sequence of states S = {s1, s9,..., 57}
(e.g., NOUN, VERB, ART, NOUN) that explains the observed sequence. By modeling
the relationship between words (observations) and their corresponding parts of speech
(states), HMMs can predict the POS tags for new sentences, helping machines better

understand human language [Manning and Schiitze, 1999).

Optimization Techniques

In HMMs, the Baum-Welch (BW) algorithm is commonly used to estimate model param-
eters, particularly when dealing with incomplete or missing data [Rabiner, 1989]. The
BW algorithm is a specific application of the expectation-maximization (EM) technique,
which iteratively refines parameter estimates by alternating between two steps: the E-

step, where the expected likelihood is calculated by treating hidden variables as if they



were observed, and the M-step, where model parameters are updated to maximize this
likelihood. This process continues until convergence to a stationary point of the likeli-
hood function [Baum et al., 1970]. Originally designed for single sequences of discrete
observations [Petrie, 1969], the BW algorithm has since been extended to handle multiple
sequences and continuous observations [Rabiner, 1989].

To better illustrate this, consider again the task of predicting parts of speech (POS) in
the sentence “Brazil won the match.” In this scenario, the observed sequence consists of
the words in the sentence, while the hidden states correspond to the POS tags (NOUN,
VERB, etc.). The Baum-Welch algorithm would be used to estimate the transition
probabilities (such as the likelihood of a NOUN being followed by a VERB) and the
emission probabilities (such as the likelihood that “Brazil” is a NOUN).

After estimating the model parameters using the Baum-Welch algorithm, the Viterbi
algorithm [Viterbi, 1967] is applied to perform inference and identify the most likely
sequence of hidden states (e.g., POS tags) for a given sequence of observations. The
Viterbi algorithm, an efficient dynamic programming technique, calculates the optimal
path through the states, ensuring that the sequence of POS tags best fits the observed
words [Viterbi, 1967]. For instance, given the words “Brazil won the match”, the Viterbi
algorithm would determine that the most likely sequence of states is NOUN, VERB,
ART, NOUN, based on the estimated model parameters.

Limitations. Despite its usefulness, the HMM has several limitations that can impact
its performance. First, the commonly used HMM formulation is based on the first-order
Markov assumption, which states that the probability of being in a particular state at
time ¢ depends only on the state at time ¢ — 1. However, in textual data, dependencies
often extend over multiple states, meaning this assumption does not always hold true
[Rabiner, 1989]. Second, HMM assumes that observations are conditionally independent
given the hidden states. In practice, this is rarely the case in real-world textual data,
where observations are often correlated, leading to potential inaccuracies in the model’s
predictions [Jurafsky and Martin, 2025]. Lastly, selecting the model’s topology is often
done through trial and error. Although some general guidelines exist, there is no formal
method to determine the optimal architecture for a given task. Additionally, deciding
on the appropriate number of states and transitions for a model remains a significant
challenge [Dimri et al., 2024].

2.2.2 Neural Language Models

Traditional language modeling techniques, such as n-gram models and HMMs, have been
pivotal in the early development of NLP. While these models have achieved considerable

success, they face certain challenges, such as difficulties in capturing long-range dependen-



cies and handling rare word sequences [Chen and Goodman, 1999, Jurafsky and Martin,
2025].

The early 2000s marked a turning point in overcoming these limitations with the
advent of neural language models, pioneered by [Bengio et al., 2000]. Unlike n-gram
models that estimate the probability of a word w; based on its preceding n — 1 words,
this new approach leveraged neural networks to represent each word as a continuous
d-dimensional vector z; € R%. This shift was inspired by the concept of distributed
representations, introduced by [Rumelhart et al., 1986], which suggests that concepts
are represented by patterns of activation across multiple units rather than by single
symbols. This idea later influenced the development of word embeddings. Although
computationally intensive at the time, this approach demonstrated superior generalization
for rare words and long-range patterns compared to n-grams. Practical adoption only
became widespread later with implementations such as Word2Vec [Mikolov et al., 2013|

and architectural advances in recurrent and transformer networks.

Recurrent Neural Networks

Early neural language models, such as the one proposed by [Bengio et al., 2000], estimate
the probability of a word w; given its preceding n-gram context using a feed-forward
neural network f parameterized by 6. This is achieved by mapping the high-dimensional
vectors of the preceding words to a continuous hidden representation. The network
computes a hidden vector h = fo(2i_ni1,...,2i-1), where h € R% This hidden vector is
then projected onto a score vector s € RIV! over the vocabulary. The probability of each

word is obtained using the softmax function:

e’

= Zj g

This formulation converts the scores s; into probabilities, where e reflects the models

p(wz =V; | Wi—p41y -5 Wi—1; 0) (21)

confidence in word v;, and the denominator ensures normalization over the entire vocab-
ulary.

Although effective, these models are limited by their fixed-size context window, which
constrains their ability to capture dependencies across variable-length sequences. To ad-
dress this limitation, Recurrent Neural Networks (RNNs) emerged as a promising archi-
tecture due to their ability to capture and model sequential data [Elman, 1990]. Unlike

feed-forward neural networks?, RNNs are specifically designed to process sequences by

2Feed-forward neural networks are a class of neural networks where information flows in one direction,
from input to output, without loops or cycles.
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maintaining a hidden state that evolves over time, encoding information from previous
steps.

For example, consider the sentence “I live in Brazil”. As the RNN processes each word
sequentially, it updates its hidden state to reflect the accumulated context. By the time
it reaches Brazil, the hidden state contains information about the preceding words “I live
in”, which helps the model make predictions about subsequent words or understand the
context in which “Brazil” appears.

While this probabilistic formulation allows the model to generate coherent sequences,
RNNs also face significant challenges, particularly with long-term dependencies. As the
length of the sequence increases, RNNs struggle to retain important information from
earlier in the sequence due to issues such as the vanishing gradient problem [Bengio et al.,
1994]. This problem occurs when gradients used in backpropagation become exceedingly
small, effectively preventing the network from learning long-range dependencies.

To address the limitations of traditional RNNs in learning long-term dependencies, the
Long Short-Term Memory (LSTM) network was introduced by [Hochreiter and Schmid-
huber, 1997]. LSTMs enhance the recurrent architecture by incorporating a memory cell
capable of maintaining information over extended time intervals. This memory cell is
regulated by three gates - input, forget, and output gates - which control the flow of

information into, within, and out of the cell.

o Input Gate: Regulates how much of the new input is added to the cell state.
o Forget Gate: Determines how much of the previous cell state is discarded.

e Output Gate: Controls how much of the cell state is exposed to the hidden state

and passed to the next time step.

This gating mechanism enables LSTMs to retain relevant information across longer
sequences. For instance, in the sentence “I live in Brazil”, the model can remember that
Brazil refers to a key entity even when predicting words that occur much later in the
sequence. The hidden state h; in an LSTM is computed based on the current input x;,

the previous hidden state h;_1, and the internal cell state ¢;. It is typically defined as:

hi = o ® tanh(ct), (2.2)

where o, is the output gate, ¢; is the updated cell state, and © denotes element-wise
multiplication [Hochreiter and Schmidhuber, 1997].

Following the development of LSTM, Gated Recurrent Units (GRUs) were introduced
as a simpler alternative to LSTMs [Cho et al., 2014]. GRUs simplify the LSTM architec-
ture by combining the forget and input gates into a single update gate and by unifying
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the cell state and hidden state into a single vector. They often achieve performance
comparable to LSTMs in many tasks [Chung et al., 2014]

o Update Gate: Controls how much of the previous state is retained and how much

of the new input is incorporated.

« Reset Gate: Controls how much of the past information should be forgotten.

This architectural simplification results in a reduced number of parameters, making
GRUs more computationally efficient than LSTMs. Despite their simpler structure, GRUs
remain effective at capturing long-term dependencies, which makes them particularly
suitable for scenarios with limited computational resources. The hidden state h; in a

GRU is typically computed as:

ht = (]. — Zt> O) ht—l + 2 ® ;Lt, (23)

where l~1t is the candidate hidden state.
Although LSTM and GRU architectures have advanced the capabilities of RNNs, they

still have some important limitations:

o Training time: The added complexity of LSTMs can substantially increase train-
ing duration, primarily due to the additional parameters involved. Although GRUs
typically train faster than LSTMs, both demand more training time than basic
RNNs [Chung et al., 2014].

e Memory consumption: The gating operations in LSTMs lead to a larger pa-
rameter space, thus consuming more memory than simple RNNs. GRUs, despite
merging certain gates, still exhibit higher memory usage compared to standard
RNN architectures [Chung et al., 2014].

o Difficulty in capturing very long-term dependencies: Although LSTMs and
GRUs mitigate issues related to long sequences better than basic RNNs, they can
still struggle with extremely long-term dependencies due to challenges such as van-

ishing and exploding gradients [Bengio et al., 1994].

Convolutional Neural Networks

Convolutional neural networks (CNNs) were originally developed for image processing
tasks [Lecun et al., 1998], which excel at capturing spatial hierarchies within visual data.
Their remarkable success in image recognition has inspired their adaptation for NLP

tasks. In NLP, CNNs operate on text by applying convolutional filters to sequences of
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word embeddings, enabling the model to effectively identify local patterns and contextual
relationships in textual data.

CNNs have been applied to various NLP tasks, including semantic parsing, search
query retrieval, and sentence modeling [Collobert et al., 2011]. By using convolutional
filters to sequences of word vectors, CNNs can capture local patterns in text data, making
them well-suited for identifying features that are crucial for these tasks. Their ability to
focus on n-grams of varying lengths allows them to detect important phrases and word
combinations, contributing to their success in NLP. However, CNNs face certain limi-
tations when applied to text. Unlike images, which have consistent spatial structures,
text data often lacks such regularity, making it difficult for CNNs to capture long-range
dependencies between words [Kim, 2014]. Moreover, CNNs may struggle with under-
standing the sequential nature of text, which is essential for tasks that require context
from distant words [Tang et al., 2018]. These challenges highlight the need for careful

adaptation when using CNNs in the less structured domain of language.

Attention

Attention mechanisms were introduced into RNNs [Bahdanau et al., 2014] and were later
applied to CNNs in various NLP tasks [Yin et al., 2016, Zhao and Wu, 2016] to over-
come some of the limitations these models face, particularly in NLP tasks. While CNNs
excel at capturing local patterns within text data, they often struggle with modeling
long-range dependencies due to the sequential nature of language [Tang et al., 2018|.
Similarly, RNNs, despite being designed to handle sequences, can have difficulty retain-
ing information over long sequences, leading to issues with context preservation [Bengio
et al., 1994]. Attention mechanisms mitigate these challenges by enabling the network to
selectively focus on the most relevant portions of the input during processing, improv-
ing performance on tasks that require understanding of complex dependencies [Vaswani
et al., 2017].

In CNNs, the integration of attention mechanisms has led to the development of
attention-based architectures. These architectures enhance feature extraction by enabling
the model to focus on critical regions of the input data, which can improve generalization
and performance in NLP tasks [Yin et al., 2016]. In RNNs, attention helps capture long-
distance dependencies by dynamically weighting different parts of the input sequence
during processing. This flexibility allows the model to retrieve relevant contextual infor-
mation, improving performance in tasks such as machine translation. [Bahdanau et al.,
2014, Luong et al., 2015].

Despite these advantages, attention mechanisms in CNNs and RNNs still have lim-

itations. In CNNs, the added computation required to calculate attention weights can
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increase training time and memory usage, especially in large-scale applications [Xu et al.,
2025]. In RNNs, while attention mitigates some long-range dependency issues, it does
not completely resolve the vanishing gradient problem [Bengio et al., 1994].

Overall, the incorporation of attention mechanisms has improved the effectiveness of
CNNs and RNNs in natural language processing. However, further research is required

to address the remaining challenges associated with attention mechanisms.

Transformer

The Transformer architecture replaces recurrent and convolutional layers entirely with
self-attention mechanisms. Unlike RNNs, which process inputs sequentially, or CNNs;,
which focus on local patterns, the Transformer uses multi-head self-attention to globally
model relationships between all sequence elements. This enables parallel processing of
sequences and eliminates positional biases, addressing long-range dependency limitations
[Vaswani et al., 2017].

The Transformer architecture consists of several key components that work together
to process and understand input data, primarily through the use of multi-head self-
attention and feed-forward neural networks. The architecture is built around the following

components [Vaswani et al., 2017]:

« Input embedding and positional encoding: The input tokens (words or sub-
words) are first converted into fixed-size continuous vector representations, called
embeddings. Since the Transformer does not inherently consider the order of words
(unlike RNNS), positional encodings are added to these embeddings to inject infor-
mation about the relative positions of words in a sequence. This allows the model

to understand the order in which words appear.

e Multi-head self-attention mechanism: The self-attention mechanism is the
core innovation of the Transformer. It allows the model to focus on different parts
of the input sequence when encoding a particular word. The “multi-head” aspect
means that the model runs multiple attention mechanisms in parallel, each focusing
on different parts of the sequence. The results are then concatenated and linearly
transformed to create the final output for each position. This process allows the

model to capture different types of relationships between words simultaneously.

e Scaled dot-product attention: This is the mathematical mechanism behind the
self-attention operation and is applied separately in each attention head. For each
token in the input sequence, three vectors are generated through learned linear
transformations: Query (@), Key (K'), and Value (V). Attention scores are com-
puted by taking the dot product between the Query and Key vectors, scaled by
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V/dj;, and passed through a softmax function to produce attention weights. These
weights indicate how much focus each token should give to the others. Finally,
each tokens new representation is computed as a weighted sum of all Value vec-
tors, where the weights - determined by the attention mechanism - assign greater

importance to the most relevant tokens.

» Feed-forward neural networks (FFN): Following the self-attention mechanism,
each output passes through a position-wise feed-forward neural network. This net-
work comprises two linear transformations separated by a ReLLU activation function,
enabling the model to introduce non-linearity and enhance the learned representa-

tions.

» Residual connections and layer normalization: To help with training deep
networks, the Transformer uses residual connections around each sub-layer (self-
attention and feed-forward layers) followed by layer normalization. This allows
gradients to flow through the network more effectively, preventing the vanishing

gradient problem and stabilizing training.

e« Encoder and decoder stacks: The Transformer architecture consists of two
main stacks: an encoder stack and a decoder stack. The encoder stack is composed
of multiple identical layers, each containing a multi-head self-attention mechanism
and a feed-forward network. The decoder stack also has multiple identical layers
but includes an additional “encoder-decoder attention” layer that helps the decoder

focus on relevant parts of the input sequence when generating the output.

2.2.3 Example of Self-Attention

To understand how self-attention works, consider the sentence: “Brazil is the largest
country in South America, and its Amazon rainforest is a global treasure.” When reading
this, humans understand that “Brazil” is the subject and that “Amazon rainforest” is an
important feature associated with it, even though these words are separated by several
tokens.

The self-attention mechanism operates within a single sequence and allows every
word to relate to every other word in that same sequence. For example, when processing
the word “treasure”, the model not only considers “Amazon rainforest” (its immediate
context) but also “Brazil” (the subject) and “largest country” (a descriptive phrase).
This ensures that the model captures all dependencies in the sequence, regardless of their

distance.
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Figure 2.1: Original Transformer architecture [Vaswani et al., 2017]

Self-attention is computed by comparing each word (query) with every other word

(key), assigning weights to the relevant information (value). Formally, this is calculated
as [Vaswani et al., 2017]:

SelfAttention(Q, K, V') = softma (QKT> %
ntion(Q, K, V') = softmax ;
Vdy,

where:
e @ (Query) corresponds to the word currently being processed.
o K (Key) represents the words being compared to the query.
« V (Value) carries the information to be integrated for each word.

o dj is the dimension of the keys, used to scale the dot product for numerical stability.

By enabling each word to influence the interpretation of every other word, self-
attention can capture both local and long-distance dependencies more effectively than
traditional recurrent or convolutional approaches. Unlike RNNs, which process sequences

step-by-step and rely on hidden states to carry information, or CNNs, which focus primar-
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ily on local receptive fields, the Transformer processes the entire sequence in parallel. It
also integrates positional embeddings to encode the ordering of tokens, ensuring that even

though words are handled concurrently, their relative positions in the text are preserved.

2.2.4 Pretrained Language Models

Pretrained language models are a significant advancement in NLP, leveraging the founda-
tional strengths of the Transformer architecture to achieve impressive performance across
a wide variety of language tasks. These models are trained on large corpora of text data
in an unsupervised or self-supervised manner, learning general language representations
that can be fine-tuned for specific downstream tasks [Devlin et al., 2019].

The key idea behind pretrained language models is to build a robust understanding
of language by learning from vast amounts of text data. This pretraining phase typically
involves objectives such as language modeling, where the model predicts the next word in
a sentence, or masked language modeling, where certain words in the input are randomly
masked, and the model must predict them (bidirectional). By doing this, the model
captures rich contextual representations that generalize well to various applications, such
as sentiment analysis, named entity recognition, and machine translation [Qiu et al.,
2020].

Popular pretrained language models include:

« BERT (Bidirectional Encoder Representations from Transformers): Pro-
posed by [Devlin et al., 2019], BERT uses a bidirectional training approach that
considers both left and right contexts, enhancing its understanding of word mean-
ing. It is pretrained with two tasks: Masked Language Modeling (MLM), where
random tokens are masked and predicted, and Next Sentence Prediction (NSP),

which trains the model to predict whether one sentence follows another in context.

+ GPT (Generative Pre-trained Transformer): Introduced by [Radford and
Narasimhan, 2018], GPT uses an autoregressive approach where the model gener-
ates text by predicting the next word in a sequence based on the preceding context.
This method has demonstrated the effectiveness of generative models pre-trained

on large datasets and fine-tuned for specific tasks.

« RoBERTa (A Robustly Optimized BERT Pretraining Approach): An
extension of BERT, RoBERTa, proposed by [Liu et al., 2020b], introduces modifi-
cations to the pretraining process to improve performance. These updates include
removing the Next Sentence Prediction (NSP) objective, training on significantly
larger datasets, using dynamic masking during pretraining (instead of static mask-

ing), increasing batch sizes, and training for longer durations. These optimizations
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allow RoBERTa to leverage the Transformer architecture more effectively, leading

to superior performance on a wide range of NLP benchmarks compared to the
original BERT model.

o T5 (Text-to-Text Transfer Transformer): Developed by [Raffel et al., 2020],
T5 treats every NLP task as a text-to-text problem, using the same model, objec-
tive, and training procedure for different tasks. This unified approach allows T5h
to achieve high performance across a wide range of NLP tasks, from translation to

summarization and question answering.

These pretrained language models have advanced NLP by learning transferable repre-
sentations from large-scale text, allowing them to perform well on many tasks even with
limited task-specific labeled data. The Transformer architecture in these models enables
a deep understanding of language semantics and context, leading to state-of-the-art re-
sults across various language tasks [Qiu et al., 2020]. Recent works have also explored
incorporating layout information to further enhance document understanding [de Lucena
Drumond et al., 2023].

2.2.5 Protein Language Models

The paradigm of pretrained language models in NLP has rapidly expanded into the bi-
ological domain, with protein sequences now being treated as sentences. Similar to how
large unlabeled text corpora enable the learning of rich linguistic representations, the
abundance of unlabeled protein sequences provides an opportunity to learn biological
representations without explicit supervision. Indeed, large-scale self-supervised models
have proven capable of extracting meaningful biochemical and structural information
from raw sequences alone. The Evolutionary Scale Modeling (ESM) model [Rives et al.,
2021] was one of the first Transformer models for proteins. It uses a deep encoder architec-
ture (34-layer Transformer, similar to BERT) and is pretrained with a masked language
modeling (MLM) objective on an evolutionary-scale dataset of protein sequences. By
training on 250 million diverse protein sequences, [Rives et al., 2021] showed that in-
formation emerges in the learned representations about fundamental protein properties
(secondary structure, contacts, etc.) even without any aligned sequences or labels. These
models have rapidly gained attention due to their ability to generate versatile protein
sequence embeddings that can be applied to a wide range of downstream tasks, such as
structure prediction, often reducing dependency on evolutionary alignments or manually
created features [Heinzinger et al., 2019].

In parallel to the development of ESM, the ProtTrans project [Elnaggar et al., 2021]

also explored the use of pretrained language models for protein sequences by adapting
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NLP architectures such as BERT, in which amino acids are treated as individual tokens.
The ProtTrans framework encompasses a family of models, including ProtBERT, ProtT5,
and ProtAlbert, among others. These models were pretrained on extremely large protein
corporacomprising up to 393 billion amino acids from datasets such as BFD and UniRef.
This large-scale pretraining enabled the models to capture rich biophysical properties of
proteins, leading to improved performance across a variety of downstream tasks. Among
these, ProtBERT, an encoder-only Transformer model following the original BERT archi-
tecture and trained with the masked language modeling (MLM) objective, demonstrated
significant gains in tasks such as secondary structure prediction.

Another model developed within the ProtTrans project is ProtT5 [Elnaggar et al.,
2021], which leverages the T5 sequence-to-sequence architecture for protein modeling.
Unlike ProtBERT, which uses an encoder-only Transformer, ProtT5 adopts a full encoder-
decoder Transformer architecture, following the original design of the T5 model. It is
trained using BERTs masked language modeling objective, in which individual amino
acids are randomly masked in the input, and the model is trained to reconstruct these
masked tokens based on their context.

A distinct approach to protein language modeling is proposed by ProteinBERT [Bran-
des et al., 2022], which incorporates biological knowledge directly into the pretraining
process. Its architecture combines a Transformer encoder with convolutional layers to
capture both global and local sequence patterns, tailored to protein-specific character-
istics. ProteinBERT adopts a multi-task training strategy that unites masked language
modeling with the prediction of gene ontology (GO) annotations, enabling the model to
learn both structural and functional representations. [Brandes et al., 2022| report that
ProteinBERT achieves competitive performance across a range of benchmarks, sometimes
surpassing larger models trained with substantially greater computational resources.

Ankh [Elnaggar et al., 2023] is a more recent protein language model that shifts the
focus from model scale to optimization and efficiency. It adopts an encoder-decoder Trans-
former architecture and incorporates several protein-specific design refinements based on
extensive empirical evaluation, including variations in masking strategies, model depth,
and embedding dimensions. The central goal of Ankh is to achieve state-of-the-art perfor-
mance with fewer parameters, improving accessibility and reducing computational costs.
[Elnaggar et al., 2023] report that, despite its smaller size and reduced embedding di-
mension, Ankh matches or surpasses the performance of earlier large-scale models across

a range of structure and function prediction benchmarks.
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Model Architecture Year

ESM Encoder (Transformer) 2021
ProtBERT Encoder (Transformer) 2021
ProtTh Encoder-Decoder (Transformer) 2021
ProteinBERT  Encoder (Transformer + Conv) 2022
Ankh Encoder-Decoder (Transformer) 2023

Table 2.1: Architectural comparison of selected protein language models and their respective
architecture and year.

2.3 Conclusion

The progression of language modeling has been traced from early n-gram and Hidden
Markov Models, which captured local context but faced limitations with unseen data,
to RNNs and CNNs, which improved sequential modeling but struggled with long-range
dependencies [Bengio et al., 1994, Chen and Goodman, 1999, Kim, 2014, Rabiner, 1989].
The introduction of attention-based Transformers marked a pivotal advancement, en-
abling parallel sequence processing and more effective context modeling [Vaswani et al.,
2017]. This development facilitated the rise of pretrained language models (PLMs) such
as BERT, GPT, and RoBERTa, which leverage large-scale corpora to learn transferable
representations, improving performance across various NLP tasks [Devlin et al., 2019,
Liu et al., 2020b, Radford and Narasimhan, 2018]. Recently, this paradigm has been ex-
tended to biology through protein language models, which treat protein sequences such
as natural language sentences.

While PLMs have revolutionized NLP by capturing deep contextual relationships and
enabling efficient fine-tuning for diverse applications, they also introduce new challenges
that must be addressed:

o Computational cost: Transformer models exhibit poor scalability with sequence

length, requiring substantial hardware resources [Vaswani et al., 2017].

o Data constraints and bias: Large corpora collected from the web, while enabling
broad generalization, often encode societal biases that are difficult to mitigate [Ben-
der et al., 2021].

o Interpretability: While attention mechanisms are often used to explain model
decisions, their weight distributions may not always accurately reflect the true

importance of input components [Jain and Wallace, 2019, Serrano and Smith, 2019].

A particularly relevant research direction is the adaptation of PLMs to specialized
domains, where labeled data may be scarce. A common approach to addressing this chal-

lenge is transfer learning, which leverages knowledge from pre-trained models to improve
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performance on new tasks. However, when new domains experience significant distribu-
tional changes compared to the original data — a phenomenon known as domain shift
[Pan and Yang, 2010] — it becomes necessary to go beyond simply using pre-trained
models. In this context, the field of domain adaptation emerges as a key research area

explored in the following chapter.
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Chapter 3

Domain Adaptation

3.1 Introduction

This chapter presents key concepts and techniques for addressing domain shift in real
scenarios. As a subfield of transfer learning, domain adaptation leverages knowledge
from one domain to improve learning in another, especially when their data distributions
differ. It begins with an overview of traditional domain adaptation methods, emphasizing
strategies for settings where domain data exhibit distributional changes while remaining
relatively stable.

The discussion then progresses to supervision regimes in domain adaptation: super-
vised, semi-supervised and unsupervised domain adaptation. The chapter also explores
multi-source domain adaptation approaches, which harness data from multiple source
domains to improve overall performance. Finally, it examines hierarchical domain adap-

tation, where domains are organized within a hierarchical structure.

3.2 Techniques

Domain Adaptation (DA) methods focus on improving the performance of a model on
a target domain by adapting it from one source domain, which have different data dis-
tributions from the target domain [Ramponi and Plank, 2020]. These methods operate
under the assumption that both the source and unlabelled target data are available dur-
ing training. The primary goal of these methods is to minimize the mismatch between
the source and target distributions, improving the model’s ability to generalize effectively
to the target domain [Csurka, 2017].

A domain is characterized by a specific data distribution, represented by a joint
probability distribution Pxy over the input space X and the label space Y. In this

context, the terms “domain” and “distribution” are used interchangeably. Let S =
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((x5,...,2%),(y5,...,y3)) denote the source domain, where z$ represents input features
and y? represents corresponding labels. Similarly, let 7' = ((«%,...,a%), (yt,...,y!)) rep-
resent the target domain, with 2! as input features and y! as corresponding labels. The
source and target domains are associated with probability distributions P, and P, re-
spectively, where P, # P,, indicating that the data distributions differ between the two
domains [Ben-David et al., 2010]. The objective of DA is to construct a model that ef-
fectively leverages the information from the source domain S to accurately predict the

labels y; in the target domain 7.

3.2.1 Discrepancy-Based Methods

Discrepancy-based methods focus on reducing the statistical divergence between source
and target domains [Ben-David et al., 2010]. Common measures include the Maximum
Mean Discrepancy (MMD), which quantifies the distance between distributions in a re-
producing kernel Hilbert space. For instance, the Deep Domain Confusion (DDC) method
[Tzeng et al., 2014] incorporates an MMD-based regularization term into a deep network’s
loss to align feature distributions across domains.

An illustrative example in NLP involves adapting a sentiment classifier trained on
Brazilian Portuguese news articles to Brazilian social media content. News text tends to
be formal and structured, whereas social media text contains colloquialisms and abbre-
viations. By minimizing MMD, discrepancy-based methods (e.g., DDC) help the model
bridge these textual style gaps.

The Joint Adaptation Network (JAN) [Long et al., 2017] extends this idea by jointly
aligning marginal and conditional distributions. This approach is particularly beneficial
in cases where class-conditional distributions differ notably across domains. For named
entity recognition (NER) tasks, for instance, the same entity (e.g., “Brazil”) may ap-
pear in distinct syntactic or semantic contexts in legal documents versus news articles.
JAN mitigates such differences through the concurrent alignment of feature and label

distributions.

3.2.2 Adversarial Methods

Adversarial methods are inspired by the principles of Generative Adversarial Networks
(GANs) [Goodfellow et al., 2020], leveraging adversarial training to learn domain-invariant
features. An example is the Domain-Adversarial Neural Network (DANN) [Ganin et al.,
2016], which introduces a gradient reversal layer to establish a competition between a
feature extractor and a domain discriminator. The feature extractor is trained to create

domain-invariant representations, while the domain discriminator attempts to differenti-
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ate between the source and target domains. The gradient reversal layer acts as a bridge,
flipping the gradient direction from the domain discriminator during backpropagation.
This process encourages the feature extractor to generate representations that make it
harder for the domain discriminator to distinguish between domains, providing better
generalization to the target domain.

A potential NLP application involves adapting a text classification model trained on
formal Brazilian Portuguese to regional dialects across the country. DANN enables the
extraction of linguistic features that remain invariant to dialectal variations, allowing a
single classifier to handle inputs from diverse regions (e.g., Sao Paulo and Bahia).

Another approach, Adversarial Discriminative Domain Adaptation (ADDA) [Tzeng
et al., 2017], refines this concept by employing separate feature extractors for source
and target data, along with a shared discriminator. In multilingual settings, such as
adapting a chatbot from English to Brazilian Portuguese, ADDA trains feature extractors
independently for each language while a discriminator seeks to differentiate the learned

features, pushing both languages toward a shared representation space.

3.2.3 Reconstruction-Based Methods

Reconstruction-based methods utilize autoencoders or generative architectures to learn
representations common to both domains. The Deep Reconstruction-Classification Net-
work (DRCN) [Ghifary et al., 2016] simultaneously minimizes reconstruction and clas-
sification losses via a shared encoder. This method is advantageous when the domains
share structural similarities but differ in specific aspects.

In the field of language translation, for example, a system originally trained on Span-
ish may be adapted to Portuguese by jointly reconstructing the original sentences and
classifying them (e.g., by topic or sentiment). Despite being distinct languages, Spanish
and Portuguese share similarities in grammar and vocabulary due to their shared Latin
roots. The model retains these shared linguistic structures while learning to adjust for
lexical and stylistic differences between the two languages.

Reconstruction-based approaches are also well-suited for Automatic Speech Recogni-
tion (ASR) tasks. For instance, a model trained on American English can be adapted
to recognize British English by learning to reconstruct audio signals that capture shared
phonetic traits, while also accounting for differences in pronunciation, such as the ten-
dency for 'r’ to be silent in British accents. This strategy enables the model to generalize

across accent variations within the English language.
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3.2.4 Normalization-Based Approaches

Normalization-based approaches address domain shifts by recalibrating feature statistics.
Adaptive Batch Normalization (AdaBN) [Li et al., 2017] replaces source-domain statistics
(mean and variance) with those from the target domain in batch normalization layers,
improving generalization when data distributions diverge substantially. For instance,
AdaBN can help adapt NLP models from formal to informal domains - such as from
formal texts to social media language in Brazilian Portuguese - by updating normalization
statistics in the layers that process token embeddings.

Instance Normalization [Ulyanov et al., 2016] is another approach that is considered
valuable in handling stylistic differences, as commonly seen in style transfer tasks. It
normalizes the activations of each individual example by subtracting its own mean and
dividing by its own standard deviation, independently of the rest of the batch. It can be
adapted to NLP scenarios where text style varies significantly. By applying instance-level

normalization, the model preserves semantic content while reducing stylistic variance.

3.2.5 Hybrid Methods

Hybrid methods combine elements from the aforementioned strategies to leverage their
strengths while mitigating limitations. A representative example is the Adversarial Dis-
criminative Domain Adaptation (ADDA) [Tzeng et al., 2017], which combines discrimi-
native modeling with adversarial training to align feature representations across domains.

This type of integration holds potential for cross-lingual natural language processing,
where the goal is to learn shared representations across languages with distinct structures.
By leveraging adversarial objectives to align distributions while preserving discriminative
capacity, such methods can facilitate knowledge transfer between high- and low-resource

languages, even in settings with limited annotated data [Chen et al., 2018|.

3.3 Supervision Regimes in Domain Adaptation

While the previous section categorized domain adaptation methods based on their under-
lying adaptation techniques, this section provides a complementary classification accord-
ing to the level of supervision available in the target domain. These adaptation methods

can be applied under different supervision regimes.
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3.3.1 Swupervised Domain Adaptation

Supervised Domain Adaptation (SDA) assumes access to labeled data from both the
source and target domains. This approach is considered one of the simplest forms of DA,
as the availability of labeled data in both domains provides a clear path for adaptation
by allowing the model to learn domain-specific differences [Ben-David et al., 2010]. Early
work in this field includes methods that modify feature representations to create shared
and domain-specific features, which are then used to train a supervised classifier on both
domains. For instance, [Daumé III, 2007] proposed a feature augmentation technique
where input features are split into general and domain-specific components, simplifying
the adaptation process. More recent approaches, such as the Contrastive Domain Adap-
tation Framework (CCSA) [Motiian et al., 2017], leverage siamese neural networks to
learn a common embedding space. These networks align the two domains by minimizing
the distance between instances of the same class while preserving inter-class separation.

These advancements demonstrate the evolution of SDA from foundational approaches
centered on feature transformations to contemporary embedding-based methods that uti-
lize contrastive learning. By progressively building on these innovations, SDA techniques
have become increasingly effective in addressing the complex challenges of domain shifts.

Mathematical Formulation: Given a labeled dataset S = (Ss,S7), where Sg =
{(af,y8)} 7=y and S = {(2f, y!) } 7, correspond to source and target domains respectively,
the goal of supervised domain adaptation is to learn a model f that minimizes a weighted

average loss:

€a(f) =a-ér(f)+(1—a)-é&(f),

where ér(f) and ég(f) are empirical losses over target and source data, and « € [0, 1]
adjusts their relative importance. This weighting is particularly relevant when n; < n,

as commonly occurs in domain adaptation scenarios [Ben-David et al., 2010].

3.3.2 Semi-Supervised Domain Adaptation

Semi-Supervised Domain Adaptation (SSDA) addresses scenarios where labeled data is
abundant in the source domain but scarce in the target domain. This approach combines
limited labeled target data with abundant labeled source data and unlabeled target data
to improve cross-domain generalization. A key strategy in SSDA is pseudo-labeling, where
the model generates labels for unlabeled target samples and iteratively refines them using
techniques such as consistency regularization [Tarvainen and Valpola, 2017] or contrastive
alignment [Kang et al., 2022]. For instance, the Contrastive Adaptation Network (CAN)

26



aligns source and target domains by minimizing intra-class discrepancies and maximizing
inter-class separation [Kang et al., 2022].

Mathematical Formulation: Following the semi-supervised learning mathemati-
cal formulation inspired by [Yang et al., 2023], consider a labeled source domain S =
{(xf,y5)}i,, a small labeled target subset T, = {(zf,y!)},, and an unlabeled target
subset Ty = {x!}",. The objective of Semi-Supervised Domain Adaptation is to mini-

mize the following objective function:

min Y L@y +a X L@)+E Y R@),

(z,y)ESUTY, z€Ty zeSUTLUTYy

where:

o L, is the supervised loss (e.g., cross-entropy),

o L, is the unsupervised loss applied to unlabeled target samples (e.g., entropy min-

imization),
e R(z) is a regularization term (e.g., consistency regularization),

o « and f are trade-off hyperparameters controlling the influence of the unsupervised

and regularization terms, respectively.

3.3.3 Unsupervised Domain Adaptation

Unsupervised Domain Adaptation (UDA) addresses learning scenarios where labeled data
is available only in the source domain, while the target domain contains only unlabeled
data. The objective is to learn a model that performs well on the target domain, despite
the domain shift.

Mathematical Formulation: Given a labeled dataset Sg = {(xf,y7)}r=, from the
source domain and an unlabeled dataset St = {x!}1*, from the target domain, the goal
is to learn a model f that minimizes the target error er(f). Although target labels
are unavailable during training, the domain adaptation theory introduced by [Ben-David

et al., 2010] provides an upper bound for the target error:

1 A
€T(f> < Es(f) + idHAH + A +¢,

where €g(f) is the source domain error, dyay(Ds, Dr) measures the divergence be-
tween source and target distributions, A = minpey, (es(h) + e7(h)) represents the lowest
possible combined error that any hypothesis can achieve on both domains, and ¢ is a
small generalization term that accounts for the discrepancy between the empirical and

true divergence due to the use of finite unlabeled samples. X is a theoretical constant
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that reflects the intrinsic difficulty of the adaptation problem: although it cannot be
minimized directly due to the absence of target labels, it serves as a reference to assess
the feasibility of adaptation. This bound shows that minimizing the source error and re-
ducing the domain divergence are key strategies to achieve low target error in the absence
of target labels.

Example: The task of offensive language identification [Rosenthal et al., 2021] aims
to classify text posts as offensive or non-offensive. In this scenario, the source domain
comprises posts from formal online forum with extensive labeled data, characterized by
standardized language usage, formal expressions, and minimal slang. In contrast, the
target domain consists of posts from a social media platform, which are typically informal,
containing slang, abbreviations, emojis, and varied linguistic expressions.

This problem is analyzed across three distinct scenarios reflecting the availability of

labeled data in the target domain:

o SDA: In this case, there is abundant labeled data from both the forum (source)
and the social media platform (target). Using SDA methods, the model explicitly
learns domain-specific differences. It leverages labeled examples from social media
to adapt to informal language and diverse linguistic patterns, reducing classification

errors caused by stylistic differences.

o« SSDA: Here, abundant labeled data is available in the forum, but only a small
set of labeled examples exists for social media. The remaining social media data
remains unlabeled. SSDA techniques utilize the extensive labeled source data and
the limited labeled target data to initially train the model. Methods such as pseudo-
labeling could be employed on the unlabeled social media posts to refine predictions,
enhancing the model’s capability to classify offensive language within the informal

context of social media.

o« UDA: In the most challenging scenario, only labeled data from the forum is avail-
able, while all social media posts are unlabeled. UDA techniques aim to minimize
the domain discrepancy between the forum and social media datasets without re-
lying on explicit labels from the target domain. Approaches such as adversarial
training, embedding alignment, or distribution matching could be applied to align
the feature representations of formal forum texts and informal social media texts,
enabling the model to identify offensive language in social media contexts, even in

the absence of labeled social media examples.

This example highlights the incremental challenges posed by decreasing target do-
main labeling, demonstrating how domain adaptation methods progressively address and

overcome these challenges.
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3.4 Multi-Source Domain Adaptation

In many real-world applications, data may come from several different sources, each
with its own distinct characteristics and distribution [Sun et al., 2015]. Multi-source
domain adaptation (MSDA) aims to leverage multiple labeled source domains to improve
performance on a target domain that is either unlabeled or sparsely labeled. Unlike
traditional source domain adaptation, which assumes a single source domain, MSDA
must integrate knowledge from diverse domains, each of which may exhibit different

types of domain shifts [Mansour et al., 2008].

3.4.1 Problem Formulation

The MSDA framework assumes access to M source domains. Each source domain D; is
associated with a trained hypothesis h;, which performs well on its own domain - that is,
it makes small prediction errors under the distribution D;.

The goal is to construct a new hypothesis h that performs well on a different domain,
referred to as the target domain, whose data distribution Dy may be different from the
source distributions. Even without assuming any specific relationship between Dy and
the D;, [Mansour et al., 2008] show that it is possible to combine the source hypotheses
hi,...,hy in a way that ensures good performance on the target domain. Formally, if
there exists a target function f such that each source hypothesis has low expected loss

on its respective domain:

L(D; hi, f)<e foralli=1,..., M,

then there exists a combined hypothesis h whose expected loss on the target domain

is bounded by:

E(DT7h>f) §36+57

for any small value 6 > 0. This result indicates that, under minimal assumptions,
knowledge from multiple sources can be transferred to an arbitrary target domain.

For example, in offensive language identification, labeled data may be available from
multiple sources such as social media platforms, online forums, and moderated comment
sections. Each domain differs in vocabulary, style, and formality, and a separate classifier
can be trained for each source. Now consider a target domain consisting of transcribed
emergency call reports, where the language is more fragmented and urgent. This target
domain may have little or no labeled data and exhibits characteristics different from the

sources. According to [Mansour et al., 2008], it is possible to combine source models to
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derive a hypothesis that performs well on the target domain, even when the target is not
strictly related to the sources. However, the effectiveness of this transfer depends on the

divergence between the source and target distributions.

3.4.2 Approaches for MSDA in NLP

MSDA expands single-source domain adaptation by integrating multiple source domains
to enhance generalization to a target domain [Sun et al., 2015]. This extension is partic-
ularly advantageous in NLP tasks, where data from various genres, registers, or thematic
areas can be combined to create more robust training sets. Unlike single-source domain
adaptation, MSDA addresses the challenge of learning from heterogeneous source distri-
butions, providing robustness to domain shifts in the target domain.

Several strategies have been proposed for MSDA in NLP, each aiming to align the data
distributions between source and target domains or to generate intermediate representa-
tions that bridge the gap between them. [Sun et al., 2015] present a systematic survey
of MSDA methods in deep learning, highlighting strategies such as latent space trans-
formation and intermediate domain generation. These techniques aim to align feature
distributions across multiple source domains and a target domain, reducing discrepan-
cies and enhancing model generalization. In NLP, this enables the adaptation of models
trained on diverse corpora (e.g., news articles, social media texts, scientific literature) to
more specialized domains (e.g., user reviews, technical reports).

A common MSDA approach involves aligning the feature spaces across multiple do-
mains by minimizing discrepancies. For instance, when adapting a sentiment analysis
model trained on Amazon product reviews, Yelp restaurant reviews, and IMDB movie
reviews to a target domain such as X (formerly Twitter) data, measures like Maximum
Mean Discrepancy (MMD) [Tolstikhin et al., 2016] or Wasserstein distance [Arjovsky
et al., 2017] are often employed. These measures reduce distributional differences be-
tween text embeddings from various domains. Aligning representations across domains
enhances the model’s ability to generalize to the target domain [Xu et al., 2018].

Beyond feature alignment, several advanced approaches leverage domain relation-
ships explicitly. A notable example is the Mixture of Experts framework proposed by
[Guo et al., 2018], which captures relationships between multiple source domains and the
target domain through a point-to-set metric. For instance, the Kitchen domain, which
includes reviews on pans, cookbooks, and electronic devices, cannot be perfectly aligned
with any single source domain such as Cookware, Books, or Electronics. Aggregating
complementary information from multiple sources allows better approximation of the

target distribution.
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Another strategy is the DistanceNet-Bandits approach introduced by [Guo et al.,
2020], which integrates reinforcement learning with MSDA. This technique employs a
multi-armed bandit algorithm to dynamically select the most informative source do-
mains, estimating their relevance to the target domain. In text classification scenarios
involving product reviews, DistanceNet-Bandits has demonstrated improved performance
by prioritizing the source domains most aligned with the target category, achieving more
robust and computationally efficient adaptation.

Additionally, recognizing that domain shift may not be uniform, [Li et al., 2021] pro-
pose Dynamic Transfer, which treats domain adaptation as a dynamic, instance-specific
phenomenon. Instead of assuming fixed domain alignments, Dynamic Transfer employs
Dynamic Residual Transfer (DRT), where residual matrices adapt the model parameters
at the instance level. This method allows for fine-grained adaptation without requiring
explicit domain labels, resulting in effective domain adaptation.

Finally, also addressing scenarios with limited labeled data, [Ren et al., 2022] introduce
the Pseudo Target Domain Adaptation method. This technique constructs pseudo target
domains - formed by combining pseudo-labeled target samples with labeled examples from

a single source domain - enabling the model to better approximate the target distribution.

3.5 Hierarchical Domain Adaptation

This thesis considers Hierarchical Domain Adaptation (HDA) as a specialized form of
MSDA that takes advantage of the hierarchical structure inherent in the data. Unlike
MSDA techniques, which generally treat data from all source domains uniformly, HDA
exploits hierarchical relationships among domains to align feature representations across
different levels of the hierarchy. By incorporating hierarchical information, this approach
enables finer-grained adaptations and more nuanced alignment, improving the model’s

performance on the target domain [Raj et al., 2014].

3.5.1 HDA as a special case of MSDA

In traditional MSDA, data from multiple source domains S1, S, ..., Sy is used to train
a model that generalizes to a target domain 7. For this thesis, HDA is considered to
extend this concept by leveraging the hierarchical organization of the source and target
domains. To illustrate, consider the evolutionary progression of languages. Languages
evolve from shared ancestors and diverge into different dialects over time. In this sce-
nario, the source domains correspond to various stages of linguistic evolution, structured

hierarchically from a root language (e.g., Proto-Indo-European) down to its descendant
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languages (e.g., Latin, Greek, Sanskrit) and further down to modern languages and di-
alects (e.g., Italian, Spanish, Hindi). HDA seeks to align language models at each stage
of this hierarchy, enabling knowledge transfer from ancestral languages to modern de-
scendants. By leveraging this structure, HDA captures the gradual linguistic shifts that
occur over time, enhancing model performance on target languages that lack sufficient
labeled data.

This hierarchical organization enables finer-grained domain alignment, as intermediate
domains (e.g., descendant languages) serve as bridges between broad ancestral domains
and specific target domains. Such intermediate adaptations allow for smoother transitions
and improved generalization, addressing challenges associated with significant domain
shifts.

3.5.2 Approaches to HDA

HDA comprises strategies that use hierarchical relationships to enable adaptation across
multiple domains. These approaches can be broadly categorized into two types: (1) meth-
ods that utilize hierarchy within the model architecture, and (2) methods that leverage
hierarchical structures within the data.

Methods employing hierarchical structures in the model architecture align represen-
tations at multiple granularity levels, regardless of whether the datasets have explicit hi-
erarchical organizations. For example, [Wen et al., 2022] proposed hierarchical alignment
of local feature patterns, organizing features across multiple internal levels to improve
generalization, but without hierarchical structure in domains.

In contrast, approaches that utilize hierarchical data structures assume that domains
are organized into predefined hierarchical structures, such as taxonomic or phylogenetic
trees. [Raj et al., 2014] presented a subspace-based method that adapts across hierarchical
levels of semantic categories, facilitating transfer between closely related domains in the
hierarchy. [Chronopoulou et al., 2022] proposed an adaptation framework for pretrained
language models, arranging textual domains into a hierarchical tree structure to enable
selective adaptation through adapters, resulting in improved performance and computa-
tional efficiency for related domains. [Finkel and Manning, 2009] introduced Hierarchical
Bayesian Domain Adaptation, employing a hierarchical Bayesian prior to connect param-
eters across related domains, enabling information sharing between domains organized
hierarchically.

In summary, while model-based hierarchical approaches capture various internal rep-
resentational levels, methods that leverage data hierarchies may benefit from prior struc-

tural knowledge of domains, which can support more effective adaptations, especially in
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low-resource scenarios. The focus of this thesis lies on the methods that exploit hierar-

chical relationships present within the data.

3.6 Conclusion

This chapter reviewed the foundations DA, from traditional supervised, semi-supervised,
and unsupervised approaches to recent advances involving MSDA and HDA methods.
While traditional DA techniques focus on reducing distributional shifts between a single
source and target domain, MSDA utilizes multiple sources to improve generalization,
and HDA further incorporates hierarchical relationships between domains to enable finer-
grained adaptation.

Each paradigm presents unique strengths and challenges: DA provides solid theoret-
ical foundations but struggles with large domain shifts, MSDA enhances generalization
but may suffer from negative transfer and increased complexity, and HDA enables gran-
ular adaptation across nested domains but often faces the challenge of negative transfer
when the hierarchical relationships between domains are imperfect or when knowledge
transfer is not properly balanced across levels.

This thesis addresses these limitations by proposing a Hierarchical Domain Adaptation
Method for Neural Language Models that introduces a hierarchical weighted loss, explicitly
balancing the contribution of higher- and lower-level domains. This approach is designed
to enable smoother knowledge transfer throughout the hierarchy, reducing the risk of

negative transfer and improving performance, particularly in low-resource scenarios.
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Chapter 4

The Epitope Prediction Problem

4.1 Introduction

This chapter provides the theoretical foundation necessary for understanding epitope pre-
diction, as the proposed method in this thesis is applied to improve linear B-cell epitope
prediction. It introduces the core concepts, explores associated challenges, and highlights
key applications of epitope prediction, encompassing both traditional and advanced com-
putational approaches. In addition, it emphasizes the importance of taxonomic levels,
illustrating how the phylogenetic tree can enable the transfer of knowledge from abundant
taxons to closely related species with limited data. The phylogenetic structure inherently
exhibits a hierarchical organization of data, making it an ideal setting for applying the

hierarchical domain adaptation approach proposed in this thesis.

4.2 Immunological Context

An antigenic determinant, or B-cell epitope (BCE), is the specific region on an antigen
that interacts with the receptor of a B-cell, eliciting an immune response. When a host
organism encounters a pathogen such as a virus or bacterium, the immune system’s
B-cells! bind to antigens® through their B-cell receptors® and produce antibodies. In
protein antigens, epitopes can be contiguous amino acid sequences or non-adjacent regions
brought into proximity by protein folding [Ponomarenko and Van Regenmortel, 2009,
Sanchez-Trincado et al., 2017].

B cells are white blood cells that produce antibodies to combat foreign substances such as pathogens.

2An antigen is any substance capable of inducing an immune response [Merriam-Webster, 2023].

3B-cell receptors (BCRs) are specialized membrane-bound proteins found on the surface of B cells, a
type of lymphocyte.
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4.2.1 Linear B-cell Epitopes

Linear B-cell epitopes (LBCEs) refer to continuous segments of amino acids within a
protein that can be recognized by the immune system. Identifying LBCEs has significant
implications for immunodiagnostics, vaccine design, and therapeutic antibody develop-
ment. Experimental identification of LBCEs, however, is typically costly, labor-intensive,
and time-consuming [Ashford et al., 2021]. As a result, researchers have sought to de-
velop computational methods that utilize protein sequence data to predict these epitopes
efficiently and at scale.

LBCEs are especially attractive targets in diagnostic development because they are
straightforward to synthesize and their recognition is preserved even after loss of native
structure, which is advantageous for many antibody-based assays [Forsstrom et al., 2015].
Nevertheless, the scarcity of training data in many organisms — particularly novel or
understudied pathogens — can negatively affect predictive performance. The method
proposed in this thesis addresses this challenge by leveraging transfer learning at higher
hierarchical levels, where data are more abundant, and adapting to lower levels, where
data become scarcer. This structured approach enables more effective learning in cases

where little labeled data are available in the target domain.

4.2.2 Importance for Diagnostics and Vaccines

Recent studies demonstrate the benefits of accurate epitope prediction in diagnostics
[Jiang et al., 2023]. By identifying highly antigenic regions that induce strong immune
responses, diagnostic tests can achieve better sensitivity and specificity, reducing false
positives and improving early disease detection [Campelo et al., 2024]. These benefits
are especially valuable in resource-limited settings, where cost-effectiveness and rapid
development cycles are crucial.

In the context of vaccines, LBCE prediction supports the identification of immun-
odominant regions that incite robust and targeted immune responses. Traditional vac-
cines often rely on whole pathogens (inactivated or attenuated) or large subunits that may
pose safety risks, especially to immunocompromised individuals [Zhang and Ulery, 2018].
By contrast, synthetic peptide-based vaccines derived from LBCEs are non-infectious,
simpler to manufacture, and can be combined to generate multivalent protection [Pono-

marenko and Van Regenmortel, 2009].
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4.3 Epitope prediction task

The humoral immune response in mammals relies on antibodies, which are essential for
recognizing and binding to antigens [Janeway, 2012]. B-cell epitopes (BCEs) represent
specific regions of an antigenic molecule that interact with antibodies [Sanchez-Trincado
et al., 2017]. These epitopes may originate either from contiguous sequences of amino acid
residues in the primary protein structure or from non-contiguous regions brought together
by protein folding. The former are commonly known as linear B-cell epitopes, while the
latter are referred to as conformational BCEs. Identifying epitopes is a critical step in
a wide array of medical and immunological applications, including vaccine development
[Hamley, 2022|, therapeutic antibody design [Sun et al., 2024], and immunodiagnostics
[Mucci et al., 2017].

Deep learning techniques are becoming increasingly common for modelling and analyz-
ing protein data [Bahai et al., 2021, Collatz et al., 2020], with transfer learning emerging
as a notable approach [Fenoy et al., 2022, Liu et al., 2024, Schmirler et al., 2024]. Several
methods involve using latent space vector representations of amino acid residues that are
extracted from large, pre-trained protein language models. These representations have
the ability to encode biological properties of proteins in a context-dependent manner
[Elnaggar et al., 2021, Rives et al., 2021}, making them a compelling option for the devel-
opment of new models capable of capturing the immunogenic properties of peptides. As
a particular example, the Evolutionary Scale Models (ESM) for protein representation
[Lin et al., 2023, Rives et al., 2021] employ self-supervised learning and are based on
the Transformer architecture, which has proven to be a powerful general-purpose frame-
work for representation learning and generative modeling, outperforming recurrent and
convolutional architectures in natural language domains [Vaswani et al., 2017]. These
models provide powerful representations of protein properties that encode useful infor-
mation for a variety of downstream modelling tasks, including the prediction of B-cell
epitopes [Clifford et al., 2022].

Most methods for predicting LBCEs, including new approaches that use large protein
language models [Clifford et al., 2022|, are trained using datasets containing labeled
peptide sequences from a phylogenetically diverse range of organisms. The main goal
of epitope prediction models developed using such heterogeneous datasets is to provide
general-purpose models. There is, however, evidence that pathogen- or taxon-specific
models can result in improved performance in the usual scenario where predictions are
made with a specific target pathogen [Ashford et al., 2021, Campelo et al., 2024]. The
hierarchical domain adaptation method proposed in this thesis utilizes taxon-specific data

to improve the performance of LBCE predictions.
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4.4 Biological Taxonomies

Taxonomy is a hierarchical system used to organize and categorize living organisms ac-
cording to their evolutionary relationships, morphological traits, and genetic character-
istics. This framework encompasses the major ranks of domain, kingdom, phylum,
class, order, family, genus, and species, moving from the most general (domain) to
the most specific (species) - Figure 4.1. Such classifications enable researchers to sys-
tematically contextualize the morphology, genetics and ecological niche of an organism
[Woese et al., 1990].

However, viruses pose a unique challenge to taxonomy. Since they are not strictly
considered living organisms, they follow a distinct classification system established by the
International Committee on Taxonomy of Viruses (ICTV). The ICTV taxonomy organizes
viruses into hierarchical ranks such as realm, kingdom, phylum, class, order, family,
genus, and species, similar to the classification of cellular organisms but specifically
adapted to the unique features of viruses. These adaptations consider aspects like the
type of genomic material, replication mechanisms, host range, and structural components.
This system provides a unified framework for classifying and understanding viral diversity
[Gorbalenya et al., 2020].

common ancenstor
of Aand B
D

I | I [zxenc]

C is the outgroup
to Aand B

A and B are sister groups

Figure 4.1: The diagram represents the progression from general categories, such as domain,
kingdom, phylum, class, order, family, and genus, to the most specific level, species. In this
hierarchy, a taxon can represent any category at any level, from the broadest (e.g., domain) to
the most specific (e.g., species). Taxa A and B are sister groups, sharing a common ancestor,
while taxon C serves as the outgroup to A and B. This diagram was created by the author,
inspired by [Collins et al., 2020].
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4.4.1 Leveraging Taxonomic Levels

Taxonomic information can improve the identification of linear B-cell epitopes by leverag-
ing high-level organism classification, which helps distinguish epitopes from non-epitopes
across diverse species [da Silva et al., 2023]. These evolutionary signals not only reveal
conserved epitopes but also enable researchers to identify antibodies that can neutral-
ize a wide range of emerging viral variants [Ishimaru et al., 2024]. Indeed, comparative
analyses frequently detect cross-neutralizing epitopes* shared within the same family or
genus, reinforcing the notion that certain antigenic features remain highly conserved over
evolutionary time [Huang et al., 2023].

Using evolutionary patterns driven by phylogenetics, researchers can prioritize candi-
date epitopes under selective constraints, reducing experimental workloads and improving
the identification of immune targets [Lacerda et al., 2010]. Furthermore, domain adapta-
tion techniques in machine learning can incorporate these taxonomic signals to prioritize
features that are conserved across lineages, mitigating overfitting and boosting predictive
performance on novel pathogens. However, relatively few LBCE predictors integrate tax-
onomic or phylogenetic insights into their pipelines. The hierarchical domain adaptation

strategy outlined in this thesis aims to address this gap by:

o Weighting training data based on evolutionary proximity;

o Enhancing generalization by transferring immunologically relevant features from

better-represented organisms.

4.5 Related Work on Epitope Prediction

The concept that the statistical patterns present in protein sequences contain crucial
information about their biological function and structure is grounded in scientific research,
as demonstrated by previous studies [Altschuh et al., 1987, Yanofsky et al., 1964]. During
evolution, sequences that correlate with the most favorable fitness °.

The evolutionary process typically favors fitness-related outcomes selected from a
wide range of possible random perturbations. The unobservable factors that govern the

contribution of a protein to fitness - such as its stability, structure, and function - are

4Cross-neutralizing epitopes are antigenic regions that are conserved across different species or strains,
allowing antibodies generated against one pathogen to neutralize others within the same evolutionary
group.

5The biological term fitness describes an organism’s ability to survive and reproduce in its environment
based on its genetic features. It serves as a measure of the genetic contribution of the organism to the
next generation[Orr, 2009]
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indirectly captured in the distribution of naturally occurring sequences [Gobel et al.,
1994].

In machine learning, natural language understanding leverages the distributional hy-
pothesis, which states that word meaning can be inferred from contextual usage. Self-
supervised learning has recently become a central approach, using unlabeled data to
predict elements such as the next word in a sentence or masked words in context, with-
out manual annotation [Bengio et al., 2000, Devlin et al., 2019]. This allows models to
benefit from large datasets. Recent work shows that, when combined with large data
and powerful architectures, self-supervised methods achieve state-of-the-art performance
in tasks like question answering, semantic reasoning, and deep learning for protein mod-
eling [Devlin et al., 2019, Rives et al., 2021].

4.5.1 Physicochemical properties-based methods

In the early days of epitope prediction, researchers focused on evaluating individual
physiochemical properties of amino acids to identify potential epitopes. They exam-
ined properties such as flexibility [Karplus and Schulz, 1985], surface accessibility [Emini
et al., 1985], hydrophobicity [Levitt, 1976], and antigenicity [Kolaskar and Tongaonkar,
1990]. Researchers developed algorithms that utilize sliding windows along the protein
sequence to calculate average amino acid propensity scales. Regions of the protein that
scored above a certain cut-off on these scales were identified as potential linear B-cell
epitopes. However, it was later determined that relying solely on 484 propensity scales
is not reliable enough for accurately detecting BCEs [Blythe and Flower, 2005]. To ad-
dress the limitations of using individual physiochemical properties and propensity scales,
more advanced epitope prediction methods have been developed. These methods employ
a variety of approaches, including sequence-based algorithms, structural modeling, and

machine learning techniques.

4.5.2 Machine learning-based methods

Machine learning (ML) methods have emerged as a powerful tool for predicting linear
B-cell epitopes in proteins. These approaches move beyond traditional single-feature
propensity scales by leveraging machine learning algorithms that can integrate a wide
range of sequence-derived and physicochemical features to improve prediction accuracy
[Yang and Yu, 2009]. Examples of popular tools utilizing machine learning methods for
B-cell epitope prediction include BepiPred [Larsen et al., 2006], ABCPred [Saha and
Raghava, 2006], LBTope [Singh et al., 2013], APCPred [Shen et al., 2015], iBCE-El
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[Manavalan et al., 2018], BepiPred 2.0 [Jespersen et al., 2017], DLBEpitope [Liu et al.,
2020a], EpiDope [Collatz et al., 2020], and EpitopeVec [Bahai et al., 2021].

Although machine learning methods have improved B-cell epitope prediction com-
pared to traditional approaches, significant challenges remain. These methods still strug-

gle with generalization and often require large amounts of high-quality data [Jespersen
et al., 2017, Manavalan et al., 2018|.

4.5.3 Deep Learning Methods

Deep learning techniques are increasingly utilized in protein analysis, and transfer learn-
ing is emerging as an effective approach. These methods use the latent vector represen-
tations of amino acid residues derived from large, pre-trained protein language models
[Chowdhury et al., 2022, Elnaggar et al., 2021]. These representations encode structural,
functional, and physicochemical properties of proteins in a context-dependent manner,
making them a robust foundation for developing models that characterize the immuno-

genic properties of amino acid residues [Rives et al., 2021].

Deep Learning for Epitope Prediction

Deep learning has demonstrated significant potential in advancing epitope prediction
accuracy. Among the methods evaluated, BepiPred 3.0 [Clifford et al., 2022] emerges as
a notable advancement. By leveraging the pre-trained ESM-2 protein language model
[Lin et al., 2023], BepiPred 3.0 enhances the prediction of both linear and conformational
epitopes. The method achieves this by improving the annotation of epitope residues and
integrating rich input features, including context-dependent embeddings from ESM-2 that
encode structural and functional information for each amino acid. Furthermore, BepiPred
3.0 incorporates predicted surface accessibility scores, which help to more effectively
discriminate between epitope and non-epitope residues.

Similarly, other methods such as EpiDope [Collatz et al., 2020] and EpitopeVec [Ba-
hai et al., 2021] utilize deep learning to tackle the challenges of epitope prediction. Epi-
Dope employs a deep neural network architecture with context-sensitive and non-context-
sensitive embeddings to improve epitope predictions. Meanwhile, EpitopeVec leverages
protein language model-based representations alongside residue properties and modified
antigenicity scales, demonstrating superior performance compared to traditional tools
[Jespersen et al., 2017].

These advancements underscore the potential of deep learning in epitope prediction,

particularly when combined with pre-trained protein language models.
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Transfer Learning in Protein Data

Transfer learning has become a key technique in addressing challenges associated with
sparse labeled datasets in protein research. For example, [Bugnon et al., 2023] highlight
the potential of transfer learning to annotate the vast protein universe, where only a
fraction of protein sequences in UniProtKB are functionally characterized. By employing
self-supervised learning on large unannotated datasets followed by fine-tuning on smaller
labeled datasets, they demonstrated a significant reduction in prediction errors for protein
family classification.

Other studies, such as [Heinzinger et al., 2019], explore SeqVec, a method for repre-
senting protein sequences as continuous vectors using ELMo [Peters et al., 2018]. This
approach captures biophysical properties from unlabeled data, enabling effective protein
prediction tasks. Similarly, [Shashkova et al., 2022] developed SEMA, a model fine-tuned
on ESM-1v and ESM-IF1 protein language models to predict antibody-antigen interac-
tions and identify epitopes with high accuracy. These studies demonstrate the power
of transfer learning in extracting meaningful patterns from protein sequences, enhancing
predictions even in data-scarce scenarios.

In summary, transfer learning represents a pivotal step forward in protein analysis,
combining the ability to utilize large, pre-trained models with fine-tuning capabilities for
specific tasks. This approach enables the development of more robust and generalizable
tools for tasks such as structure prediction, detection of remote homologs, and protein

engineering [Rao et al., 2019].

4.6 Discussion

This chapter provided an overview of LBCE prediction, detailing fundamental immuno-
logical principles and exploring the computational challenges to epitope identification.
LBCEs have proven crucial for diagnostic applications and vaccine development, offering
advantages in cost-efficiency and safety compared to traditional vaccine approaches.
This chapter also emphasized that phylogenetic relationships offer valuable signals for
computational modeling in epitope prediction. By leveraging taxonomic hierarchies and
evolutionary information, it is possible to transfer knowledge gained from well-studied
pathogens to newly emerging or understudied organisms. Incorporating these evolu-
tionary information into computational models has been shown to enhance prediction
accuracy and help overcome the limitations imposed by scarce data [da Silva et al., 2023,
Lacerda et al., 2010]. However, not all phylogenetic signals are equally relevant; de-
termining which taxonomic levels provide meaningful information and how to use them

remains a challenge.
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While state-of-the-art epitope prediction methods such as BepiPred 3.0 leverage large
pre-trained protein language models, their reliance on broadly diverse training sets can
limit predictive accuracy. Recent evidence indicates that taxon-specific approaches can
outperform generalized models [Ashford et al., 2021].

In response to these limitations, this thesis introduces a hierarchical domain adap-
tation approach based on taxon-specific protein language models. This strategy is sup-
ported by evidence that transfer learning from large protein datasets improves model
performance across various tasks [Rao et al., 2019]. The proposed method is discussed in

the next chapter.
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Chapter 5

Domain Adaptation with a Protein
LLM

This chapter presents the method proposed in this thesis: A Hierarchical Domain Adap-
tation Method in Neural Language Models. It begins by examining the dataset’s neighbor-
hood structure through t-SNE visualizations, which reveal the distribution and overlap of
positive and negative samples from distinct pathogens, highlighting the potential bene-
fits of taxon-specific modeling. Next, a single-domain adaptation approach is introduced
to provide a foundation for exploring phylogeny-aware transfer learning strategies. Fi-
nally, the chapter defines and formalizes the proposed HDA method, which generalizes

single-domain adaptation to leverage hierarchical domain structures.

5.1 Estimated density

To qualitatively investigate the neighborhood structure of the datasets, a t-SNE projec-
tion [van der Maaten and Hinton, 2008] of the whole data was used and later stratified by
pathogen group. The analysis aimed to determine whether positive/negative data from
distinct pathogens clustered around distinct regions of the feature space. Insights gath-
ered from this projection could help explain the enhanced performance of taxon-specific
models over generalist approaches, without however addressing the underlying biological

mechanisms.
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Figure 5.1: The projection was computed using a fraction of the entire dataset. For t-SNE
training, 720 samples were employed, and the resulting model was applied to project 2,930
samples (as shown in the figure above) from a larger dataset consisting of 42,990 samples in
total. It’s worth noting the heterogeneity within the data, consisting of observations from
numerous distinct organisms, as positive and negative points appear to be distributed with a
certain uniformity across the projected space.
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Figure 5.2: The t-SNE projection is presented, stratified by B. pertussis, Corynebacterium
and Orthopozvirus. Observe the well-defined clusters of high-density positive and negative ob-
servations, occupying distinct segments within the feature space. This visual representation
illustrates the propensity for epitopes (positive observations) from various pathogens to con-
sistently manifest in separate regions of the feature space. Importantly, regions with a high
density of positive examples for one pathogen can also have a high density of negative examples
for another pathogen. For instance, the portion around (-20, -5) of the negative B. pertussis
examples overlaps a high-density region of positive Corynebacterium points in the same region.
This type of data characteristic may make taxon-specific models better able to learn which
regions of the feature space are more strongly associated with positive/negative examples for
specific pathogens. Generalist models, on the other hand, are trained on data from multiple
pathogens, which can make it more difficult for them to learn the specific signatures of each
pathogen.
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Figure 5.3: t-SNE-projected data from E. coli, Enterobacteriaceae and Lentivirus. As another
example of why taxon-specific modelling may be preferrable, the negative examples of Enter-
obacteriaceae in the region of (-22, -20) align with a high-density cluster of positive E. coli data

points in the same region.
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Figure 5.4: t-SNE-projected data from M. tuberculosis, P. aeruginosa and SARS-Cov-2. In
the projection, the negative examples of M. tuberculosis, portion (-15, -20), align with a high-
density cluster of positive P. aeruginosa data points in the same region. Additionally, note
that the negative P. aeruginosa samples within the range (-15, -20) roughly coincide with a

populated cluster of positive M. tuberculosis data points within the same region.
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Figure 5.5: t-SNE-projected data from S. mansoni, T. gondii and P. falciparum. In this
projection, the negative examples of S. mansoni, portion (-15, -15), align with a high-density
cluster of positive T. gondii data points in the same area.

Although each figure presents only qualitative comparisons for three pathogens, this

analysis, based on consistent coordinates, enables clearer identification of overlapping

positive and negative regions among different pathogen groups. This evaluation provides

support for the adoption of taxon-specific models.
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5.2 Single Domain Adaptation Modeling

Before formalizing the hierarchical domain adaptation method, a preliminary framework
is established using a single domain adaptation approach, referred to as Epitope Transfer
in this study. This initial work focused on evaluating whether meaningful information
could be transferred from higher-level to lower-level taxa. To achieve this, a higher
hierarchical level with a substantial amount of data was selected as the single source
domain for these experiments. The framework for this analysis consisted of four main

components (see Figure 5.6) and involved modeling tasks as follows:

1. Data extraction and preparation: labelled peptides (i.e., peptides known to be either
epitope-containing regions or non-epitopes) are extracted from the IEDB database,
and their corresponding source proteins are retrieved either from the NCBI Protein
database or UniprotKB, based on the protein ID provided in the IEDB entry.
Protein sequences are then clustered based on normalized alignment scores, using
single-linkage hierarchical clustering. A similarity threshold of 30% is applied,
such that only sequences sharing at least 30% similarity are grouped into the same
cluster. The resulting clusters serve as allocation units for splitting data during

model development, training, and testing.

2. Embedder development: fine tuning of the general-purpose ESM protein language
model to the task of LBCE prediction, as detailed in the Appendix A. The ESM
model is re-trained using the entries from the higher-level dataset, resulting in
a protein embedder fine tuned for that particular phylogenetic group. Through
this fine tuning step, the model structure learned as part of the ESM model’s
primary development [Rives et al., 2021] is augmented with knowledge about the
representation of LBCEs from that particular higher level taxon. In this work, for
single domain adaptation experiments, all experiments were first conducted using
the 650-million-parameter version of ESM-1b as the base model, and the entire
procedure was then repeated using ESM-2 as the base model; however, adapting the
framework to employ more recent or larger embedder versions is a straightforward
task.

3. Feature calculation: the fine-tuned embedder is deployed to extract features for the
sequences from the target (lower level) taxon. In the feature generation process,
the full lower-level protein sequences are fed to the tuned embedder rather than
just the labelled peptides, which enables the model to capture richer contextual
information. This results in an enhanced feature representation for each residue

position. The output of this feature calculation model is then reduced so that only
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the labeled peptide regions are selected for later classifier training and performance

assessment.

. Predictive model training: finally, the data generated in the previous step are used
to fit and optimize the hyperparameters of a Random Forest classifier [Breiman,

2001], resulting in a bespoke LBCE prediction model for the target taxon.
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Figure 5.6: Overview of the EpitopeTransfer framework for building taxon-specific Linear B-
Cell Epitope predictors. Figure extracted from the article “EpitopeTransfer: a Phylogeny-aware

transfer learning framework for taxon-specific linear B-cell epitope prediction”.
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5.3 Hierarchical Domain Adaptation Modeling

This section extends the single domain adaptation methods described previously to a hi-
erarchical domain adaptation (HDA) approach. Unlike the earlier strategy that considers
only a single source domain, this generalization incorporates information from all higher-
level domains. Central to this extension is the introduction of a Hierarchical Weighted
Cross-Entropy Loss designed to dynamically adjust the influence of higher-level data
while simultaneously balancing exposure to positive and negative samples. By tailoring
the importance of each level, the method aims to mitigate negative transfer and address
class imbalance within hierarchical structures. In doing so, it fills critical gaps in existing
HDA approaches, offering a more flexible and adaptable methodology. To support the
formalization of the problem in the Total Cost subsection, the following key terms are
defined:

1. Data Domains

e Source Domain (Dg): Includes data from varying levels of the hierarchy, rep-

resented by:

— Xg: Feature space of the source domain.
— P(Xg): Marginal probability distribution of the features in Xg.
— Yq: Labels in the source domain.
— H;pgers: Hierarchical index of the source domain, is defined within the
interval: Hipgers € [0, 1)
Formalized as Dg = {Xg, P(Xs), Ys, Hindezs }-

» Target Domain (Dr): Consists of data from a level of the hierarchy, including:

— Xp: Feature space of the target domain.

— P(Xr): Marginal probability distribution in the target domain.

— Y7: Labels in the target domain for supervised tasks.

— H;pgeer: Hierarchical index of the target domain, is defined within the

interval: Hige.r € [0, 1.

Formalized as Dy = { X, P(Xr),Yr, Hindear }-

2. Mapping Function: The mapping function, denoted as f,qp, is defined to trans-
late the raw data from both the source (Dg) and target (D) domains into a

computational representation.

3. Hierarchical Proximity: The hierarchical index (H;uq4,) quantifies the level of

each domain within the overall data hierarchy. This index is determined based on
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the hierarchical organization of the data, with higher values representing higher
levels in the hierarchy and vice versa. The proximity between Dg and Dr in
the hierarchy is determined by the difference in their hierarchical indices, AH =
| Hindgers — Hindexr|, Where Hipgews > Hingeor- A smaller value of AH indicates

closer proximity in the hierarchy.

H, Root
| { | \
H, Branch, Branchs
‘ r | 1 ‘
H, Sub branch, Sub branch, Sub branchs

I [, I I
!

Hy Leaf, Ledfg Leafs Leaf,,

This figure illustrates a general hierarchical data structure. As an example,
Branch; might represent the Source Domain (Dg), while Lea f5, within
Sub__branchsy, could exemplify the Target Domain (Dr). To prevent data leakage,

data related to Leafs is excluded from Branch;.

. Hierarchical Weights: Hierarchical weights (Wy) are level-specific weights as-
signed to each hierarchical level during the training process. These weights are used
to define the contribution of each hierarchical level to the total loss. By assigning
higher weights to specific levels, the model can emphasize the importance of certain

levels during optimization. The hierarchical weight set is represented as:

WH — {whoawhl) s 7whn}7

where wp,, wp,, ..., wp, are the weights assigned to the hierarchical levels hg, hq,

.., hy, respectively.

. Weighted Cross-Entropy Loss: The Weighted Cross-Entropy Loss is formu-
lated to manage hierarchical data and address class imbalance at each level of the

hierarchy.

o The hierarchical weight wy is fixed at 1.0, while w; € [0, 1] for all levels [ €
{1,...,n}.
e The weights are normalized such that their sum across all levels is given by

Z?:o Wy
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« Class imbalance at each level [ is addressed using a class-weight vector oy, com-
puted based on inverse frequency for each class. The vector is then normalized
to ensure that > = 1.

classes &

The loss at a specific level [ is defined as:

wp

L= ——
Z?:o Wy

'CE(@l,yz;Oéz)>

where:

o w; represents the hierarchical weight for level [,
o {; denotes the predicted logits for level [,
e 1, corresponds to the ground-truth labels for level [, and

o CE(-) is the Cross-Entropy Loss function that incorporates class weights.

Total Cost

The total cost, denoted as Weighted Cross Entropy Loss (WCEL), is defined as follows:

WCEL :mﬁln[ Z Z CE(fel(fmap<$sy HindexS))a Ys; al)

(3357ys)€(XS YS)Z 0 ] =0

Source-Domain Loss

+ ) Z CE<f91<fmap(93t> zndexT)), Ye: al)].

(wt,yt) € (X7, YT) I=0

Target-Domain Loss

1. Source-Domain Loss:

Z Z CE(fGl(fmap(xsa Hindea:S))a Ys; al)

(xsvys) (XS'7YS)Z 0 ] 0

For the source domain (Xg,Ys), a separate Cross-Entropy Loss (CE) is calculated
for each hierarchical level [ € {0,1,...,n}. The total source-domain loss is a
weighted average of these losses, where the hierarchical weights (w;) determine the
relative importance of each level. The class weights (o) are included in the Cross-

Entropy Loss to address class imbalance within each level.

2. Target-Domain Loss:

>3 OB (Saulfmapls Hnaeer) i )

(wt,y¢) € (X7, YT) 1=0
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In the target domain (X7, Y7), a separate Cross-Entropy Loss is also calculated for
each hierarchical level [. The hierarchical weight w; is fixed at 1.0 in the target
domain to reflect its critical importance during training. Class weights (¢;) are

used to mitigate class imbalance at this level.

3. Optimization Parameters (#): The parameters  represent the trainable compo-
nents of the neural language model, such as weights and biases across all layers. The
objective is to optimize 6 to minimize the total weighted loss across all hierarchical

levels for both the source and target domains.

5.4 Conclusion

This chapter introduced a novel HDA method designed to address challenges posed by
data arranged across multiple hierarchical levels. In particular, the method extends single
domain adaptation approaches by incorporating level-specific weights (W), and class-
weight vectors (ag) that jointly manage the variable importance of each level and class
imbalance in the hierarchy. By formalizing the Weighted Cross-Entropy Loss with sep-
arate source- and target-domain components, the method provides a flexible mechanism
for balancing the influence of both higher and target domains during training. The decou-
pling of domain losses ensures that each hierarchical level contributes proportionally to
the training process, minimizing negative transfer and noise, and preserving the structure
of the hierarchy during joint optimization.

In contrast to single-domain adaptation techniques that often assume a flat domain
structure, the proposed approach considers hierarchical proximity, enabling more fine-
grained control over adaptation when the target domain has limited labeled data. Al-
together, these features make the proposed HDA strategy particularly well-suited for
complex, multi-level NLP tasks, where source domains are organized hierarchically. To
demonstrate the effectiveness of this approach, the method is applied to the task of

epitope prediction in the following chapter.
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Chapter 6

Results

6.1 Introduction

This chapter aims to evaluate the proposed hierarchical domain adaptation method in a
case study. The chosen task is epitope prediction, which provides a suitable scenario due
to its hierarchical organization of data within a phylogenetic structure. This inherent
organization allows the exploration of hierarchical domain adaptation strategies that
leverage relationships between taxonomic levels.

Initially, a Single Domain Adaptation (SDA) approach is applied to the epitope predic-
tion task to establish a starting point. Following this, the solution is generalized through
the proposed Hierarchical Domain Adaptation (HDA) method, which adjusts the rela-
tive importance of training examples based on the hierarchical structure. This process
demonstrates the ability of the method to transfer knowledge from broader domains, such
as higher taxonomic levels, to more specific domains, such as species or genus.

The chapter also provides a detailed description of the datasets, emphasizing their
hierarchical and phylogenetic organization, along with the methods employed for data
preparation and clustering. Additionally, the performance of the proposed method is
rigorously evaluated through statistical significance analysis, comparing it to baseline
methods across eight metrics. Finally, the results are discussed, highlighting their impli-

cations and contributions.

6.2 Experimental Setup

This section describes the experimental setup adopted to evaluate the proposed domain
adaptation approaches. It includes details on data extraction and preparation, the archi-
tecture of the neural network models, and the evaluation metrics used for performance

assessment.
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6.2.1 Data extraction and preparation

Data extraction, filtering, and consolidation were performed using the epitopes R pack-
age [Campelo and Ashford, 2022]. Epitope data was retrieved from the complete XML
export of the Immune Epitopes Database, IEDB [Vita et al., 2018]. All entries clas-
sified as LBCEs from organisms within the taxa Viruses (NCBI:txid10239), Bacteria
(NCBI:txid2), and Eukaryota (NCBI:txi2759) were extracted from the IEDB export.

The proteins associated with each entry were retrieved from either the NCBI protein
database [Coordinators, 2015] or UniprotKB [Consortium, 2022], based on the protein IDs
provided in the metadata of each IEDB record. Overlapping peptides of the same class
were merged into a single entry to prevent partial data duplication, while residues with
conflicting labels were labelled as the mode of the labels for each residue, and removed in
case of ties. Positive-labelled peptides of length greater than 30 were removed to prevent
long “Epitope-containing regions” from adding excessive noise to the training data, and
labelled peptides shorter than 5 residues were also treated as noise and removed from the
datasets.

Entries were clustered based on source protein dissimilarity, calculated using DIA-
MOND [Buchfink et al., 2021], using agglomerative clustering with single linkage and
a 30% similarity threshold. Clusters were considered as the basic splitting unit when
isolating the final test sets, as well as for cross validation and hyperparameter tuning, to
minimize data leakage due to similarity /homology.

To investigate the transfer learning approach proposed in this work, twenty pairs of
datasets were instantiated for a diverse range of pathogens, including bacterial, viral, and

eukaryotic pathogens. These datasets are detailed in Table 6.1.

Table 6.1: Twenty pairs of datasets for a diverse range of pathogens

Higher Level Taxon Peptides Lower Level Taxon Peptides
Bacteria
Pseudomonadota (phylum) | 276- / 551+ | B. pertussis (species) 34- / 61+
P. aeruginosa (species) 12- / 12+
E. coli (species) 22- / 94+
Enterobacteriaceae (family) 46- / 153+
Terrabacteria (clade) 977- / 888+ | M. tuberculosis (species) 267- / 322+
Corynebacterium (genus) 12- / 13+
Bacillota (phylum) 538- / 4244 | C. difficile (species) 43- / 31+
Chlamydia (genus) 299- / 293+ | C. trachomatis (species) 79- / 144+
Virus
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Higher Level Taxon Peptides Lower Level Taxon Peptides
Bamfordvirae (kingdom) 39- / 1344+ | Orthopoxvirus (genus) 14- / 20+
Pararnavirae (kingdom) 188- / 410+ | Lentivirus (genus) 12- / 99+
Orthornavirae (kingdom) | 8356- / 41454+ | SARS-CoV-2 (genus) 726- / 244+
Negarnaviricota (phylum) 426- / 5944 | Influenza A (species) 89- / 246+
Measles morbilivirus (species) | 26- / 37+
Filoviridae (family) 138- / 74+
Mononegavirales (order) 240- / 260+
Duplodnaviria (realm) 716- / 7704+ | Human Gamma. 4 (species) | 466- / 354+
Eukaryota
Platyhelminthes (phylum) 147- / 132+ | S. mansoni (species) 243- / 173+
Apicomplexa (phylum) 357- / 1184+ | T. gondii (species) 60- / 82+
Sar (clade) 357- / 11864 | P. falciparum (species) 206- / 921+
Protostomia (clade) 837- / 7224+ | O. volvulus (species) 246- / 133+

6.2.2 Selected Neural Network Architecture

The neural network models adopted in this work were selected based on a balance between
representation quality and computational efficiency. Although different architectures were
used for SDA and HDA modeling, it is important to emphasize that the proposed mod-
elling framework is architecture-agnostic. That is, it does not depend on the specific
internal structure of any particular model, as long as it is capable of generating mean-
ingful contextual embeddings from protein sequences. This flexibility ensures that the
methodology remains adaptable to future developments in protein language modeling and
applicable across different domains and tasks.

For SDA modeling, the model selected was ESM-1b [Rives et al., 2021], a large-
scale protein language model based on a 33-layer encoder-only Transformer architecture,
comprising 650 million parameters. This model was pretrained on 250 million protein
sequences and produces 1280-dimensional contextual embeddings for each residue. Its
performance, open-source nature, and ease of use make it suitable for SDA experiments
designed to ensure reproducibility. Additionally, all experiments were also executed us-
ing ESM-2 [Lin et al., 2023], an evolution of ESM-1b that introduces improvements in
architecture, training parameters, computational resources, and data. The ESM-2 model
employed has the same architecture and size as ESM-1b, comprising 33 layers, 650 million

parameters, and 1280-dimensional embeddings.
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In contrast, for HDA modeling, only the lightest architecture from the ESM-2 family
[Lin et al., 2023] was selected. This model is based on a 6-layer encoder-only Transformer
architecture, comprises 8 million parameters, and generates residue-level embeddings with
a dimensionality of 320. The choice of a smaller model is motivated by the multi-level
nature of hierarchical adaptation, which involves fine-tuning across several domain lev-
els. In this setting, a lightweight model enables faster training and evaluation, while
maintaining satisfactory performance and ensuring better scalability in resource-limited

or structurally complex scenarios.

~

s
VAN

Input Embeddings Enconder Blocks (33x)

Positional Encoding Output Representations

The schematic representation of the ESM-1b architecture is shown above, illustrating
its structural components. The model takes as input a sequence of amino acids, which is
first converted into high-dimensional (1280-dimensional) embeddings. Positional encod-
ings are then added to incorporate sequence order information. The resulting represen-
tations are passed through 33 Transformer encoder blocks, each composed of multi-head
self-attention and position-wise feed-forward layers. These blocks iteratively refine the
representations, capturing both local and long-range dependencies between amino acids.
The final output layer generates contextualized 1280-dimensional embeddings for each
residue, enabling a wide range of downstream tasks. Compared to ESM-1b, ESM-2
maintains the same architecture but replaces the absolute positional encoding with Ro-
tary Position Embedding [Su et al., 2024], allowing for better extrapolation beyond the
training context window. Additionally, dropout layers used in both the hidden and atten-
tion components of ESM-1b were completely removed in ESM-2, increasing the model’s

effective capacity.
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6.2.3 Optimization Strategy

This section presents the optimization strategies adopted for both the SDA and HDA
scenarios. In the SDA case, optimization focuses on tuning the hyperparameters of a
Random Forest classifier, while in the HDA approach, it involves fine-tuning the parame-
ters of a transformer-based protein language model. The following subsections detail the

techniques, search spaces, and decisions used in each context.

Single Domain Adaptation

Hyperparameter optimization in the SDA setup was conducted using Bayesian opti-
mization with the Optuna framework [Akiba et al., 2019]. The default sampler, Tree-
structured Parzen Estimator (TPE) [Bergstra et al., 2011], was used due to its efficiency
in exploring complex search spaces. The following hyperparameters of the Random Forest

classifier were optimized:

e n_estimators: integer sampled from the interval [100, 500]. This parameter defines

the number of decision trees in the ensemble.

o max_depth: categorical choice among [None, 10, 20, 30]. This parameter con-

trols the maximum depth of each decision tree.

e min_samples_split: integer sampled from [2,10]. This parameter specifies the

minimum number of samples required to split an internal node.

o min_samples_leaf: integer sampled from [1,10]. This parameter specifies the

minimum number of samples required to form a leaf node.

» max_features: categorical choice among [’sqrt’, ’log2’, None]. This param-
eter determines the number of features to consider when searching for the best split

at each node.

e bootstrap: categorical choice between True and False. If set to True, the model

uses bootstrap sampling when building trees.

e criterion: categorical choice between ’gini’ and ’entropy’. This parameter

defines the function used to measure the quality of a split.

The objective of the optimization process was to identify the set of hyperparameters
that maximizes the overall Matthews Correlation Coefficient (MCC), computed as the
average across all cross-validation folds on the validation set. The trial that achieved
the highest MCC was selected as the final configuration. After selecting the optimal hy-

perparameters, a global decision threshold was calculated by aggregating the predictions
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across the validation folds and selecting the threshold that maximized the MCC. With
the optimal hyperparameters and threshold selected, a final model was trained on all
folds, excluding the held-out test fold. Predictions on the test set were then made using

the previously determined global threshold.

Hierarchical Domain Adaptation

For the HDA scenario, the optimization strategy focused on fine-tuning the smallest
variant of the ESM-2 model (6 layers and 8 million parameters) [Lin et al., 2023]. A key
hyperparameter in this setting was the number of trainable layers.

To determine a suitable value for this parameter, a preliminary exploratory phase was
carried out using three representative datasets: B. pertussis, E. coli, and M. tuberculosis.
In this phase, the number of trials was fixed at five, and the optimization focused solely
on identifying the optimal number of trainable layers. The process began with a single
trainable layer, progressively unfreezing additional layers. The selection was guided by
identifying a balance point between underfitting and overfitting. This procedure revealed
that setting four trainable layers provided consistent behavior across all three taxa.

Based on the preliminary exploratory phase, the number of trainable layers was fixed
at four and the number of optimization trials was limited to five for the 17 remaining taxa,
as increasing trials tended to promote overfitting rather than improve generalization. This
phase also revealed a broader challenge: while the number of trainable layers could be
adequately defined, the optimal extent of optimization - particularly the number of trials
- varies across taxa, highlighting the need for adaptive strategies to set this parameter
more effectively in future work.

The following hyperparameters were optimized:

« learning rate: log-uniformly sampled from the interval [107¢,5 - 107%]. This

parameter controls the step size in the weight update during training.

o weight_decay: sampled from [107%,1073]. This coefficient is used for L2 regular-

ization to prevent overfitting by penalizing large weights in the model.

« dropout_rate: sampled from [0.0,0.2]. This parameter defines the dropout prob-

ability, which randomly disables units during training to improve generalization.

e num_train_epochs: integer sampled from the interval [5,10]. This parameter de-
fines the number of training epochs, i.e., the number of full passes through the

training dataset.

e level weight i: for each level 7 in the hierarchical loss, a weight was assigned to

balance its contribution to the total loss. The weight for level 0 was fixed at 1.0,
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while weights for levels i = 1... L were sampled from [0.0, 1.0]. These values adjust

the influence of higher hierarchical levels during model training.

6.2.4 FEvaluation Metrics

To assess the performance of the proposed method, a comprehensive set of evaluation met-
rics was employed. The metrics include Area Under the ROC Curve (AUC), F1 Score,
Matthews Correlation Coefficient (MCC), Balanced Accuracy (BACC), Positive Predic-
tive Value (PPV or Precision), Negative Predictive Value (NPV), Sensitivity (Recall),
and Specificity. Each of these indicators offers complementary insights into different as-
pects of model performance, capturing the ability to correctly identify epitopes, minimize
false positive predictions, and ensure reliable behavior under class imbalance.

Model selection and threshold optimization were guided by the MCC, which served
as the primary performance metric. The classification threshold was defined as the value
that maximized the MCC on the validation set.

A detailed description and mathematical formulation of all evaluation metrics are

provided in Appendix A

6.3 Single Domain Adaptation Modeling

This section introduces the SDA strategy for LBCE prediction, initially applied to validate
the effectiveness of phylogeny-based knowledge transfer. The proposed method, Epitope-
Transfer, incorporates a phylogeny-aware fine-tuning at the higher level that leverages
evolutionary relationships among pathogens to improve performance at the target level.
The method is evaluated across a diverse set of taxa and compared against both internal
baselines and state-of-the-art predictors. Two base models serve as the foundation for
the experiments: ESM-1b and ESM-2.

6.3.1 Performance Results (ESM-1b)

The performance evaluation is organized into four parts: (1) the impact of phylogeny-
aware transfer learning, (2) a comparison with state-of-the-art LBCE prediction methods,
and (3) an analysis of specific target taxa that benefit the most from the SDA strategy.

1. Phylogeny-aware transfer learning

This first analysis of results investigated the impact of phylogeny-aware transfer learning

on the performance of taxon-specific LBCE predictors. To achieve this, EpitopeTransfer
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was compared with baseline models that followed the same procedure but omitted the
phylogeny-aware fine-tuning step (ESM-1b baseline).

Based on this comparison, EpitopeTransfer demonstrated significant performance
gains over the ESM-1b baseline, as shown in the plot (Figure 6.1) and detailed in the
first row of Table 6.2. Specifically, the median of the paired differences (Medians of
diff.) was 0.082 (0.025, 0.143), with p,q; = 0.01698, indicating a statistically relevant
improvement. This highlights the effectiveness of the phylogeny-aware fine-tuning step in
enhancing the MCC metric, allowing EpitopeTransfer to better classify examples when

compared to the baseline approach.

Table 6.2: Comparison Results for MCC. P-values correspond to Wilcoxon Signed-Ranks tests
on the median of paired differences. Adjusted p-values were calculated using the Benjamini-
Hochberg stepwise correction for all vs. one tests. Adjusted p-values under 0.05 correspond to
statistically significant results at the (FDR-corrected) 95% confidence level.

Metric Pair Medians of diff. p-value FDR Sign.
MCC EpitopeTrans. vs BepiPred 3 0.204 (0.105, 0.390) 0.00823  0.01698 Yes
MCC EpitopeTrans. vs EpiDope  0.134 (0.023, 0.254) 0.02041  0.02041 Yes
MCC EpitopeTrans. vs EpitopeVec 0.150 (0.027, 0.296) 0.02041  0.02041 Yes
)
)

MCC EpitopeTrans. vs ESM-1b  0.082 (0.025, 0.143) 0.00618  0.01698 Yes
MCC EpitopeTrans. vs NPTransfer 0.065 (0.019, 0.154) 0.01019  0.01698 Yes

—~ o~~~ —~

A core hypothesis in the development of EpitopeTransfer is that LBCE data from
phylogenetically closer pathogens provides more relevant information for training taxon-
specific predictors than data from distantly related organisms. This hypothesis was ex-
amined by comparing EpitopeTransfer with non-phylogenetic transfer learning baselines
(NPTransfer). These baselines use the same methodology as EpitopeTransfer but perform
embedder fine-tuning on epitopes exclusively from higher-level taxa that do not include
the target taxon and are composed of distantly related pathogens (see Appendix B).

The results clearly indicate performance gains from incorporating a phylogeny-aware
data filtering strategy for fine-tuning (see the second row of Table 6.2). A statistically sig-
nificant improvement in MCC was observed for EpitopeTransfer compared to NPTransfer
(Amedians = 0.065; 95% CI: 0.019, 0.154; p = 0.01019; FDR = 0.01698). This improve-
ment demonstrates the effectiveness of leveraging phylogenetic relationships to refine the
feature embedder on data derived from pathogens that are phylogenetically closer to
the target taxon. These results, along with the observed improvement over the ESM-1b
baseline, show that EpitopeTransfers superior performance comes from fine-tuning the
feature embedder using data related to pathogens phylogenetically close to the target

taxon. This phylogeny-aware approach enables the model to capture evolutionary re-

63



MCC

1.0 -
0.8 - -
-
0.6 - B
*s . * e
0.4 - e .
- - - : . - -s
- & -
0.2 - o = — . <l .
% - ] . . - .
L] * .lr o.a L L
0.0 - e . * i . e,
- ; - H .
- . .. *
-0.2 - *. p=2.04e-02 ‘ p=170e02 p=1.70e-02
. p = 2.04e-02
-0.4 - p = 1.70e-02
_0.6 - I I 1 I 1 I
EpitopeTransfer BepiPred 3 EpiDope EpitopeVvec esm-1b MNPTransfer

Figure 6.1: Comparison of methods in terms of MCC. The violin plots represent the distribu-
tion of MCC values for each method across multiple datasets. P-values correspond to Wilcoxon
Signed-Ranks tests performed on the median of paired differences between EpitopeTransfer and
each baseline. Adjusted p-values were calculated using the Benjamini-Hochberg stepwise correc-
tion for all vs. one comparisons. Adjusted p-values below 0.05 indicate statistically significant
results at the (FDR-corrected) 95% confidence level.

lationships that appear to contribute to accurate predictions, going beyond the general

refinement /fine-tuning of the protein language model for epitope prediction.

2. Comparison with state-of-the-art approaches

The performance of EpitopeTransfer was evaluated against three state-of-the-art LBCE
prediction methods: BepiPred 3.0 [Clifford et al., 2022], EpiDope [Collatz et al., 2020],
and EpitopeVec [Bahai et al., 2021]. These methods employ deep-learning techniques for
epitope prediction but do not explicitly utilize taxon-specific or phylogeny-aware strate-
gies. The objective of these comparisons was to assess whether the components of the
EpitopeTransfer modeling pipeline are sufficient to produce taxon-specific predictors with
performance comparable to or exceeding the leading prediction methods.

Table 6.2 presents the results, indicating statistically significant differences in me-
dian MCC scores between EpitopeTransfer and the external baselines. EpitopeTransfer
demonstrated significant improvements over BepiPred 3.0 (Amedians = 0.204; 95% CI:
0.105, 0.390; p = 0.00823; FDR = 0.01698), EpiDope (Amedians = 0.134; 95% CI: 0.023,
0.254; p = 0.02041; FDR = 0.02041), and EpitopeVec (Amedians = 0.150; 95% CI:
0.027, 0.296; p = 0.02041; FDR = 0.02041). These effect sizes were larger than those

64



observed in comparisons against ESM-1b and NPTransfer. Further details, including all
eight metrics, are available in Appendix D.

As presented in Table 6.4, which summarizes the average performance of methods
across 20 datasets, EpitopeTransfer achieves an average MCC of 0.258, outperforming all
three generalist LBCE predictors. Among the external baselines used, EpiDope obtains
the highest average MCC (0.118), while BepiPred 3.0 and EpitopeVec reach 0.041 and
0.112, respectively. These results indicate that the phylogeny-aware fine-tuning strategy

of EpitopeTransfer leads to more robust and accurate taxon-specific predictor.

3. EpitopeTransfer provides high-performance LBCE predictors for some
pathogens

Some of the EpitopeTransfer models constructed in this study exhibit particularly high
predictive performance, making them attractive for researchers interested in specific
pathogens. One prominent example is the model for the Filoviridae family, which in-
cludes highly virulent viruses such as Ebola and Marburg [Kuhn et al., 2019]. According
to Table 6.3, this model achieves an MCC of 0.766, representing substantial improve-
ments over BepiPred 3.0 (0.143), EpiDope (0.240), and EpitopeVec (0.202). This large
margin suggests that EpitopeTransfer is a robust LBCE predictor for pathogens within
this family.

Other EpitopeTransfer models also demonstrate notably strong performance. For
instance, the Plasmodium falciparum model achieves an MCC of 0.505, showing improve-
ments over BepiPred 3.0 (0.119), EpiDope (0.088), and EpitopeVec (0.018). The model
developed for genus Lentivirus, which covers HIV, exhibits an MCC of 0.770, outper-
forming BepiPred 3.0 (0.376), EpiDope (0.033), EpitopeVec (0.067). Similarly, the model
trained for the Enterobacteriaceae family achieves an MCC of 0.479, surpassing BepiPred
3.0 (0.054), EpiDope (0.144), and EpitopeVec(0.061).

On the other hand, EpitopeTransfer did not yield strong results for some pathogens.
For Sars-cov-2, its MCC of 0.043 is lower than the 0.169 achieved by EpiDope, making
EpiDope the better model for this virus. Likewise, for M. tuberculosis, EpitopeTransfer
obtained an MCC of -0.031, whereas ESM-1b emerged as the strongest approach with an
MCC of 0.039. In these cases, the EpitopeTransfer models are unlikely to provide im-
provements over existing predictors. Nevertheless, substantial MCC improvements were
observed in most EpitopeTransfer models, with only a few exceptions showing limited

gains. Complete results for the remaining seven metrics are provided in Appendices C.
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Table 6.3: Comparison of methods for MCC

Method Dataset Value
EpitopeTransfer |B. pertussis 0.000
BepiPred 3.0 B. pertussis -0.008
EpiDope B. pertussis -0.108
EpitopeVec B. pertussis 0.351
ESM-1b B. pertussis -0.090
NPTransfer B. pertussis 0.000
EpitopeTransfer |C. difficile 0.173
BepiPred 3.0 C. difficile -0.027
EpiDope C. difficile 0.000
EpitopeVec C. difficile 0.279
ESM-1b C. difficile 0.052
NPTransfer C. difficile 0.000
EpitopeTransfer |Corynebacterium 0.492
BepiPred 3.0 Corynebacterium 0.247
EpiDope Corynebacterium 0.309
EpitopeVec Corynebacterium 0.315
ESM-1b Corynebacterium 0.294
NPTransfer Corynebacterium 0.000
EpitopeTransfer |C. trachomatis 0.447
BepiPred 3.0 C. trachomatis -0.055
EpiDope C. trachomatis 0.137
EpitopeVec C. trachomatis 0.286
ESM-1b C. trachomatis 0.385
NPTransfer C. trachomatis 0.440
EpitopeTransfer |E. coli 0.325
BepiPred 3.0 E. coli -0.136
EpiDope E. coli 0.248
EpitopeVec E. coli 0.031
ESM-1b E. coli 0.217
NPTransfer E. coli 0.349
EpitopeTransfer |Enterobacteriaceae 0.479
BepiPred 3.0 Enterobacteriaceae 0.054
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Method Dataset Value
EpiDope Enterobacteriaceae 0.144
EpitopeVec Enterobacteriaceae 0.061
ESM-1b Enterobacteriaceae -0.035
NPTransfer Enterobacteriaceae -0.113
EpitopeTransfer |Filoviridae 0.766
BepiPred 3.0 Filoviridae 0.143
EpiDope Filoviridae 0.240
EpitopeVec Filoviridae 0.202
ESM-1b Filoviridae 0.558
NPTransfer Filoviridae 0.716
EpitopeTransfer |Human gammaherpesvirus 4 0.241
BepiPred 3.0 Human gammaherpesvirus 4 -0.180
EpiDope Human gammaherpesvirus 4 0.068
EpitopeVec Human gammaherpesvirus 4 0.070
ESM-1b Human gammaherpesvirus 4 0.249
NPTransfer Human gammaherpesvirus 4 0.209
EpitopeTransfer |Influenza A 0.176
BepiPred 3.0 Influenza A 0.239
EpiDope Influenza A 0.054
EpitopeVec Influenza A 0.139
ESM-1b Influenza A -0.058
NPTransfer Influenza A 0.099
EpitopeTransfer |Lentivirus 0.770
BepiPred 3.0 Lentivirus 0.376
EpiDope Lentivirus 0.033
EpitopeVec Lentivirus 0.067
ESM-1b Lentivirus 0.615
NPTransfer Lentivirus 0.469
EpitopeTransfer |M. tuberculosis -0.031
BepiPred 3.0 M. tuberculosis 0.029
EpiDope M. tuberculosis 0.033
EpitopeVec M. tuberculosis -0.008
ESM-1b M. tuberculosis 0.039
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Method Dataset Value
NPTransfer M. tuberculosis -0.056
EpitopeTransfer | Measles morbilivirus 0.386
BepiPred 3.0 Measles morbilivirus -0.310
EpiDope Measles morbilivirus 0.079
EpitopeVec Measles morbilivirus 0.091
ESM-1b Measles morbilivirus 0.160
NPTransfer Measles morbilivirus 0.194
EpitopeTransfer | Mononegavirales 0.286
BepiPred 3.0 Mononegavirales -0.136
EpiDope Mononegavirales 0.336
EpitopeVec Mononegavirales 0.170
ESM-1b Mononegavirales 0.321
NPTransfer Mononegavirales 0.209
EpitopeTransfer |Orthopox 0.366
BepiPred 3.0 Orthopox 0.375
EpiDope Orthopox 0.163
EpitopeVec Orthopox -0.206
ESM-1b Orthopox 0.246
NPTransfer Orthopox 0.181
EpitopeTransfer |Ovolvulus 0.272
BepiPred 3.0 Ovolvulus 0.277
EpiDope Ovolvulus -0.055
EpitopeVec Ovolvulus 0.064
ESM-1b Ovolvulus 0.202
NPTransfer Ovolvulus 0.210
EpitopeTransfer |P. aeruginosa 0.147
BepiPred 3.0 P. aeruginosa -0.258
EpiDope P. aeruginosa 0.137
EpitopeVec P. aeruginosa 0.145
ESM-1b P. aeruginosa 0.263
NPTransfer P. aeruginosa 0.350
EpitopeTransfer |P. falciparum 0.505
BepiPred 3.0 P. falciparum 0.119
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Method Dataset Value
EpiDope P. falciparum 0.088
EpitopeVec P. falciparum 0.018
ESM-1b P. falciparum 0.453
NPTransfer P. falciparum 0.437
EpitopeTransfer |S. mansoni 0.056
BepiPred 3.0 S. mansoni 0.126
EpiDope S. mansoni 0.185
EpitopeVec S. mansoni -0.016
ESM-1b S. mansoni 0.093
NPTransfer S. mansoni 0.120
EpitopeTransfer |Sars-cov-2 0.043
BepiPred 3.0 Sars-cov-2 0.011
EpiDope Sars-cov-2 0.169
EpitopeVec Sars-cov-2 0.101
ESM-1b Sars-cov-2 0.072
NPTransfer Sars-cov-2 0.037
EpitopeTransfer |T. gondii 0.218
BepiPred 3.0 T. gondii -0.070
EpiDope T. gondii 0.092
EpitopeVec T. gondii 0.084
ESM-1b T. gondii 0.128
NPTransfer T. gondii 0.108
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Metric |EpitopeTrans BepiPred 3.0 EpiDope | EpitopeVec ESM-1b NPTransfer
AUC 0.690 (£0.029) [0.503 (£0.035)]0.634 (£0.032)]0.602 (£0.027)|0.656 (£0.030)|0.642 (£0.032)
F1 0.592 (£0.060) [0.363 (£0.045)|0.276 (£0.029)|0.509 (£0.044)(0.542 (£0.060)]0.529 (40.061)
MCC 0.258 (£0.052) [0.041 (£0.044)]0.118 (£0.025)]0.112 (£0.029)|0.172 (£0.047)|0.177 (£0.049)
B. ACC |0.623 (£0.028) |0.527 (£0.021)|0.548 (£0.011)[0.566 (£0.019)]0.581 (40.023)|0.585 (£0.025)
PPV 0.549 (£0.056) [0.462 (£0.066)]0.581 (£0.065)]0.496 (£0.055)]0.529 (£0.058)|0.522 (£0.062)
NPV 0.724 (£0.057) [0.555 (£0.057)|0.571 (£0.054)|0.604 (£0.050)[0.638 (£0.060)]0.584 (4-0.066)
Sensit. | 0.697 (£0.068) [0.393 (£0.062)|0.226 (£0.037)|0.610 (£0.037)|0.641 (£0.073)|0.656 (+0.073)
Specif. | 0.549 (£0.072) |0.660 (£0.061)|0.869 (£0.030)[0.522 (£0.023)]0.521 (40.083)|0.513 (£0.079)

Table 6.4: Summary of average test set performance (mean £standard error) for Epitope-
Transfer (proposed method) and five baseline methods across 20 selected datasets. Each row
corresponds to a performance evaluation metric, and the values indicate the mean performance
of each method over all datasets.

6.3.2 Performance Results (ESM-2)

All experiments described in the previous subsection for ESM-1b were repeated using

the ESM-2 as the base model, and the results are presented in Appendices E and F.

However, despite the architectural and training improvements introduced in ESM-2, a

significant performance gain was observed only in specificity, as illustrated in Figure 6.5.

In contrast, ESM-1b demonstrated statistically significant superiority in both F1 score

and sensitivity. All other metrics showed no significant improvement.

Metric Pair Medians of diff. p-value Significant
AUC ET ESM2 vs ET ESM1b -0.003 (-0.029, 0.024) 0.86949 No
BACC ET_ESM2 vs ET_ESM1b 0.007 (-0.033, 0.039)  0.70118 No
F1 ET_ESM2 vs ET_ESM1b -0.051 (-0.107, -0.004) 0.03277 Yes
MCC ET_ESM2 vs ET_ESM1b 0.023 (-0.046, 0.080)  0.57060 No
NPV ET_ESM2 vs ET_ESM1b 0.006 (-0.026, 0.069)  0.84082 No
PPV ET_ESM2 vs ET_ESM1b 0.008 (-0.034, 0.044)  0.64766 No
Sensitivity ET_ESM2 vs ET_ESM1b -0.109 (-0.224, -0.014) 0.02395 Yes
Specificity ET_ESM2 vs ET_ESM1b 0.084 (0.019, 0.264) 0.01718 Yes

Table 6.5: Summary of paired statistical comparisons for all performance metrics between
EpitopeTransfer (ET) models utilizing ESM-2 and ESM-1b as base models. Statistically signif-
icant differences (p < 0.05) are indicated in the “Significant” column.
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6.4 Hierarchical Domain Adaptation Modeling

This section presents the results obtained for the hierarchical generalization of the SDA
strategy described previously. While the SDA approach focuses on knowledge transfer
from a single phylogenetically related source domain, the HDA modeling extends this
paradigm by incorporating data from distinct taxonomic levels with potentially different
weights. In this approach, the levels of the source domain are weighted according to their
hierarchical relevance, reflecting their relative importance to the prediction task. The
proposed strategy enables the model to simultaneously leverage broader information from
higher-level taxa and specific patterns from lower-level groups. Although evolutionary
proximity may provide a useful assumption, the method allows the contribution of each
level to be flexibly adjusted based on its actual relevance to the prediction task, enabling

a more effective adaptation process.

6.4.1 Performance Results

The performance evaluation for the hierarchical domain adaptation modeling is presented
in two parts: (1) a comparative analysis between the proposed hierarchical strategy and
a baseline model, and (2) a statistical significance analysis of the observed results.

The baseline model was developed as a reference to assess the impact of incorporat-
ing hierarchical information in LBCE prediction. In this setup, all training data from
different levels were combined and used uniformly, without considering their hierarchical
relationships. No level-specific weighting was applied, and the model was trained in a flat
manner, treating all examples equally regardless of their domain level. This represents a

standard supervised learning approach without hierarchical domain adaptation.

1. Hierarchical domain adaptation vs Baseline

The majority of HDA models developed in this study outperformed the baseline model, in-
dicating the effectiveness of incorporating hierarchical information to enhance predictive
performance in LBCE prediction. Notably, the model for the Filoviridae family (Ta-
ble 6.6) achieved an MCC of 0.595, an improvement of +0.227 over the baseline (MCC =
0.368). Similarly, the model for C. trachomatis reached an MCC of 0.469, exceeding the
baseline (MCC = 0.240) by +0.229, and the Mononegavirales model obtained an MCC
of 0.483, surpassing its baseline (MCC = 0.339) by +0.144. The Orthopoxvirus model
also benefited considerably from hierarchical adaptation, with an MCC of 0.372, which
is +0.316 higher than its baseline (MCC = 0.056).

In contrast, for some pathogens, improvements were minor or even negative. For S.

mansoni, the hierarchical model resulted in an MCC of —0.003, underperforming rela-
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tive to the baseline (MCC = 0.157). Similarly, the model for T. gondii showed a lower
MCC (0.217) compared to its baseline (MCC = 0.326). Nevertheless, in most evaluated
taxa, the hierarchical domain adaptation strategy consistently enhanced predictive per-
formance, underscoring its robustness and generalizability for LBCE prediction across

diverse pathogens.

Table 6.6: Comparison of methods using MCC across 17 selected datasets

Method Dataset Value
EpitopeTransfer |C. difficile 0.063
Baseline C. difficile -0.038
EpitopeTransfer |C. trachomatis 0.469
Baseline C. trachomatis 0.240
EpitopeTransfer |Corynebacterium 0.181
Baseline Corynebacterium 0.099
EpitopeTransfer |Enterobacteriaceae 0.235
Baseline Enterobacteriaceae 0.156
EpitopeTransfer |Firoviridae 0.595
Baseline Firoviridae 0.368
EpitopeTransfer |Human gammaherpesvirus 4 0.200
Baseline Human gammaherpesvirus 4 0.178
EpitopeTransfer |Influenza A 0.384
Baseline Influenza A 0.317
EpitopeTransfer |Lentivirus 0.256
Baseline Lentivirus 0.227
EpitopeTransfer | Measles morbilivirus 0.100
Baseline Measles morbilivirus -0.105
EpitopeTransfer | Mononegavirales 0.483
Baseline Mononegavirales 0.339
EpitopeTransfer |Orthopoxvirus 0.372
Baseline Orthopoxvirus 0.056
EpitopeTransfer |Ovolvulus 0.167
Baseline Ovolvulus 0.043
EpitopeTransfer |P. aeruginosa -0.060
Baseline P. aeruginosa -0.163
EpitopeTransfer |P. falciparum 0.422
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Method Dataset Value
Baseline P. falciparum 0.343
EpitopeTransfer |S. mansoni -0.003
Baseline S. mansoni 0.157
EpitopeTransfer |Sars-cov-2 0.143
Baseline Sars-cov-2 0.077
EpitopeTransfer |T. gondii 0.217
Baseline T. gondii 0.326

Table 6.7: Summary of average test set performance (mean + standard error) for Epitope-
Transfer (HDA) and the baseline method across 17 selected datasets. Each row corresponds to
a performance evaluation metric, and the values indicate the mean performance of each method
over all datasets.

Metric EpitopeTransfer Baseline

AUC 0.698 (+0.027) 0.625 (+0.033)
F1 0.549 (+0.053) 0.454 (£0.056)
MCC 0.249 (+£0.044) 0.154 (£0.039)
Balanced Accuracy 0.630 (+£0.027) 0.581 (+0.020)
PPV 0.541 (+0.060) 0.545 (+£0.072)
NPV 0.707 (£0.065) 0.620 (+0.058)
Sensitivity 0.664 (+£0.072) 0.508 (£0.063)
Specificity 0.596 (+0.076) 0.654 (+0.072)

2. Statistical Significance Analysis

To evaluate the effectiveness of the HDA strategy, a statistical significance analysis com-
pared the performance of HDA models with baseline models without hierarchical weight-
ing. The comparison was conducted across several evaluation metrics: AUC, Balanced
Accuracy, F1 Score, MCC, NPV, PPV, Sensitivity, and Specificity.

Table 6.8 summarizes the pairwise comparisons between HDA and baseline models.
For each metric, the table reports the median of paired differences (with 95% confidence
intervals), the associated p-values from Wilcoxon signed-rank tests, and indicates whether

the differences are statistically significant at the 0.05 level.
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Metrics with significant positive gains. The hierarchical domain adaptation strat-
egy led to statistically significant improvements in multiple key metrics. Notably, MCC
exhibited a median improvement of +0.091, with a p-value of 0.00934, indicating a consis-
tent enhancement in predictive capability. Similar improvements were observed for AUC
(+0.075; p = 0.00934), Balanced Accuracy (+0.049; p = 0.01500), F1 Score (+0.091;
p =0.00934), NPV (4+0.075; p = 0.00567), and Sensitivity (+0.147; p = 0.03479). These
findings suggest that the hierarchical weighting scheme improves the overall discrimina-
tive performance of the model and enhances its ability to correctly identify positive and

negative examples.

Metrics with non-significant differences. Some metrics did not exhibit statistically
significant differences. PPV showed a slight increase (+0.020), but this gain was not
significant (p = 0.45857). Similarly, Specificity showed a small decrease (—0.021), which
was also not statistically significant (p = 0.73679), indicating that hierarchical adaptation
did not meaningfully affect specificity.

MCC
1.0 -

0.8 -
0.6 -

0.4 -

0.2 -

0.0 -

-

p=934e-03

—0.2 -
—0.4 -

—0.6 - | 1
EpitopeTransfer Baseline

Figure 6.2: Comparison of EpitopeTransfer against the baseline method in terms of MCC.
Violin plots represent the distribution of MCC values for each method across multiple datasets.
A Wilcoxon Signed-Ranks test was performed on the median of paired differences, yielding a
p-value of 9.34 x 1073, The p-value below 0.05 indicates a statistically significant difference at
the 95% confidence level.
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Table 6.8: Summary of comparison results between EpitopeTransfer (HDA) and the Baseline
across all metrics

Metric  Pair Medians of Diff. p-value  Signif.
AUC EpitopeTransfer vs Baseline 0.075 (0.017, 0.132) 0.00934 Yes
BACC EpitopeTransfer vs Baseline 0.049 (0.024, 0.084) 0.01500 Yes
F1 EpitopeTransfer vs Baseline 0.091 (0.044, 0.131) 0.00934 Yes
MCC EpitopeTransfer vs Baseline 0.091 (0.048, 0.154) 0.00934 Yes
NPV EpitopeTransfer vs Baseline 0.075 (0.020, 0.148) 0.00567 Yes
PPV EpitopeTransfer vs Baseline 0.020 (-0.032, 0.059) 0.45857 No
Sensit. EpitopeTransfer vs Baseline 0.147 (0.032, 0.267) 0.03479 Yes
Specif. EpitopeTransfer vs Baseline-0.021 (-0.212, 0.110)  0.73679 No

6.5 SDA vs HDA

This section presents a comparative analysis of the proposed EpitopeTransfer method
under two domain adaptation strategies: SDA and HDA.

A direct comparison between SDA and HDA as presented in this chapter must be
interpreted with caution, as the two strategies were evaluated under different experimental
conditions. These include substantial variations in model capacity, data availability, and

the extent of optimization:

o SDA: leveraged a large ESM-2 model with 650 million parameters, full access to
labeled data at the higher level, and a hyperparameter search with 100 trials.

« HDA: relied on a small ESM-2 model with 8 million parameters, 150 peptides per

level, and a significantly smaller optimization of 5 trials.

As shown in Table 6.9, the performance of HDA was comparable to that of SDA
across the 17 target taxa, with some variation observed for individual datasets. Table 6.10
presents the results of the Wilcoxon paired test, indicating that there was no statistically

significant difference between HDA and SDA across all evaluated metrics (p-values >
0.05).
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Table 6.9: Performance estimates of EpitopeTransfer under Hierarchical (HDA) and Single-
level Domain Adaptation (SDA), based on MCC scores for 17 target taxa.

Dataset HDA (Hierarchical) | SDA (Single)
C. difficile 0.063 0.137
C. trachomatis 0.469 0.568
Corynebacterium 0.181 0.282
Enterobacteriaceae 0.235 0.427
Filoviridae 0.595 0.610
Human gammaherpesvirus 4 0.200 0.275
Influenza A 0.384 0.218
Lentivirus 0.256 0.350
Measles morbilivirus 0.100 0.068
Mononegavirales 0.483 0.428
Orthopoxvirus 0.372 0.168
O. volvulus 0.167 0.095
P. aeruginosa -0.060 0.249
P. falciparum 0.422 0.410
S. mansoni -0.003 0.069
SARS-CoV-2 0.143 0.018
T. gondii 0.217 0.312

Table 6.10: Wilcoxon paired test between HDA and SDA for all metrics.

Metric  Pair Medians of diff. (95% CI) p-value Significant
AUC SDA vs HDA -0.005 (-0.040, 0.038) 0.84980 No
F1 SDA vs HDA 0.033 (-0.049, 0.086) 0.40376 No
MCC  SDA vs HDA 0.030 (-0.045, 0.090) 0.35589 No
BACC SDA vs HDA 0.004 (-0.040, 0.044) 0.83126 No
PPV SDA vs HDA 0.035 (-0.046, 0.083) 0.37782 No
NPV~ SDA vs HDA 0.012 (-0.036, 0.096) 0.58612 No
Sensit. SDA vs HDA -0.012 (-0.186, 0.141) 0.74666 No
Specif. SDA vs HDA 0.048 (-0.134, 0.212) 0.64413 No

In summary, even though SDA employed a more resource-intensive configuration,

HDA still achieved similar performance under more modest conditions. A more rigorous
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comparison under the same conditions (model capacity, data availability, and the extent

of optimization) will be developed in future work.

6.6 Conclusion

This chapter presented a case study demonstrating the application of the proposed single
and hierarchical domain adaptation method to the task of LBCE prediction. The results
show that incorporating phylogenetic structure into domain adaptation yields consistent
performance improvements in many scenarios, both under the single and hierarchical
configurations.

While the single domain adaptation approach already demonstrated substantial gains
over three external and two internal baselines, the hierarchical modeling further gener-
alized this strategy by enabling knowledge transfer across several taxonomic levels. The
proposed method showed particular advantages for pathogens where structured phyloge-
netic relationships offer complementary information to enhance prediction.

In conclusion, the comparative analysis between SDA and HDA revealed that, while
SDA benefited from a more powerful setup, HDA was still able to deliver competitive
results despite operating under significantly more constrained conditions. These findings
reinforce the potential of hierarchical domain adaptation as a viable strategy in low-
resource scenarios. However, a more rigorous and fair comparison - using equivalent model
sizes, data volumes, and optimization efforts - is necessary to fully assess its advantages

and limitations.
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Chapter 7
Discussion

This thesis addressed the challenge of transferring knowledge in neural language models
across domains that are hierarchically structured. A central research question guided
this work: Given data that is hierarchically structured, how can knowledge be
effectively transferred from higher levels, where data is abundant, to lower
levels, where data is scarce? To answer this question, the thesis proposes a domain
adaptation method that models hierarchical relationships and progressively adapts across

taxonomic levels.

7.1 Contributions

This thesis proposed a method for hierarchical domain adaptation in neural language
models, with application on the task of linear B-cell epitope prediction.

Initially, the method was evaluated under a SDA strategy across 20 distinct datasets
and compared to five state-of-the-art LBCE predictors. In this setting, the method
consistently outperformed the baselines in terms of AUC, MCC, Balanced Accuracy,
F1 Score, NPV, PPV and Sensitivity. Statistical significance analysis confirmed that
the improvements were not due to random variations, but represented significant gains.
The SDA approach yielded the best performance for several pathogens. For instance,
the model for the Filoviridae family achieved an MCC of 0.766, representing substan-
tial improvements over BepiPred 3.0 (0.143), EpiDope (0.240), and EpitopeVec (0.202).
The Plasmodium falciparum model achieves an MCC of 0.505, showing improvements
over BepiPred 3.0 (0.119), EpiDope (0.088), and EpitopeVec (0.018), while the genus
Lentivirus model exhibits an MCC of 0.770, outperforming BepiPred 3.0 (0.376), Epi-
Dope (0.033), EpitopeVec (0.067). The Enterobacteriaceae family model achieves an
MCC of 0.479, surpassing BepiPred 3.0 (0.054), EpiDope (0.144), and EpitopeVec(0.061)
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Following this, the generalization of the method was tested under a HDA strategy
applied to 17 target domains. A baseline for comparison was constructed by removing the
hierarchical weights, enabling an evaluation of the added value brought by the hierarchical
modeling. The results again favored the proposed method, with HDA demonstrating
superior performance in the vast majority of cases. Among the evaluated datasets, the
model for the Filoviridae family achieved an MCC of 0.595, improving over the baseline of
0.368. The C. trachomatis model reached an MCC of 0.469, compared to the baseline of
0.240, and the Mononegavirales model obtained an MCC of 0.483, an improvement over
the baseline of 0.339. The Orthopoxvirus model also benefited significantly, achieving an
MCC of 0.372 versus a baseline of 0.056.

The results support a positive answer to the central question posed: it is indeed pos-
sible to effectively transfer knowledge from higher-level, data-rich domains to
lower-level, data-scarce domains when hierarchical relationships are explicitly
modeled.

This thesis proposed a HDA method tailored for neural language models, with the

following key contributions:

o A hierarchical training strategy that progressively adapts models across taxonomic
levels, enabling smoother knowledge transfer from higher-level to lower-level do-

mains.

e The introduction of the Hierarchical Weighted Cross-Entropy Loss, which incorpo-
rates level-specific weights to dynamically identify and prioritize the most relevant
level for the target domain. Additionally, the loss function incorporates weighting
strategies to balance positive and negative samples across the hierarchy, reducing

potential biases and improving model generalization.

o Successful application of the proposed method to the task of linear B-cell epitope
prediction, demonstrating its effectiveness in a real-world problem. This task is
particularly relevant for the development of vaccines, therapeutic antibodies, and

immunodiagnostic tools.

7.2 Limitations

This section details the main limitations identified in this study. The three categories
concern the application of the approaches in the case study of epitope prediction: (1)
limitations of the SDA modeling approach, (2) limitations of the HDA modeling approach,

and (3) limitations derived from the comparative analysis between both strategies.
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(1) Single Domain Adaptation Modeling

Although the SDA strategy demonstrated high performance across several taxa, there
were exceptions where the proposed EpitopeTransfer method underperformed in com-
parison to existing models. For example, in the case of SARS-CoV-2, EpitopeTrans-
fer achieved a MCC of only 0.043, considerably lower than the 0.169 obtained by Epi-
dope. Likewise, for M. tuberculosis, the model recorded an MCC of -0.031, while ESM-1b
achieved 0.039. These findings suggest that, although SDA-based Epitope Transfer gener-
ally outperformed other approaches, it may not be suitable for all pathogens. In particu-
lar, its use may not be recommended for cases such as SARS-CoV-2 and M. tuberculosis,

where it underperformed compared to baseline models.

(2) Hierarchical Domain Adaptation Modeling

The HDA strategy also presented limitations. For instance, in the case of S. mansoni,
the model achieved a MCC of -0.003, which was lower than the 0.157 obtained by the
baseline. Similarly, for T gondii, the MCC was 0.217, compared to 0.326 for the baseline.
In certain cases, such as S. mansoni and T. gondii, a decline in performance was observed

compared to baseline models, indicating that HDA might be less suitable in such contexts.

(3) Comparison between SDA and HDA

When compared to HDA, the SDA strategy did not demonstrate statistically significant
differences in performance across any evaluated metric, as shown in Table 6.10. According
to the Wilcoxon paired test, neither approach outperformed the other in terms of AUC,
F1, MCC, BACC, PPV, NPV, sensitivity, or specificity.

It is important to note that, despite differences in experimental configuration — such
as the limitation to 150 labeled peptides per hierarchical level for HDA and a more
restricted hyperparameter search (5 trials for HDA versus 100 for SDA) — SDA did not
achieve superior results; in fact, HDA achieved comparable performance even under less
favorable conditions. Therefore, a rigorous evaluation under the same experimental setup

is necessary to determine whether HDA can truly outperform SDA.

7.3 Future Work

From a methodological perspective, some potential research directions emerge from this

thesis:
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o Improve optimization by refining the stopping criteria. The regret-based method
proposed by [Makarova et al., 2022] was initially adopted but was found to be
insufficient to prevent overfitting in the epitope prediction task. This reveals a key
challenge in applying the fully neural network-based HDA approach: determining
the appropriate extent of optimization required to maximize performance while
avoiding overfitting, as the optimal stopping point may vary considerably across

different taxa.

o Extending the method to unsupervised hierarchical domain adaptation scenarios.
Although the proposed approach was designed for settings with limited labeled
samples in the target domain, an interesting direction for future research is to
explore its applicability in fully unsupervised contexts, where no target labels are
available. This would allow the method to operate without supervision in the target
domain, expanding its usability in real-world scenarios where annotated data is

unavailable.

o Incorporating interpretability mechanisms into the HDA framework to identify
which regions of the input sequence most influenced the prediction at each position.
In the context of epitope prediction, for example, this would enable a better under-
standing of the underlying biological mechanisms that lead the model to classify a

given residue as an epitope or not.
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Appendix A

Embedder Development Details

The Embedder Development process has two main components: ESM-1b fine-tuning and
feature calculation. A key aspect to fine-tuning step is the use of a sliding window

technique to compute amino acid level data.

Sliding window

The sliding window involves capturing contextual sequences, considering the window size
along the entire protein length. This process ensures that each amino acid is analyzed
within its specific context, comprising neighboring sequences. In this work, a window
size of 1024 is utilized, aligning with the maximum capacity permitted by the ESM-1b
model.

Mathematically, the sliding window is defined as follows: Let S = [ay, ag, ..., a,] be
the amino acid sequence, where n is the length of the sequence. Let w be the window
size, and let p be the current position in the sequence, starting from pgiart t0 Pena, Where
1 < p < n. Define L(p,w) and R(p,w) as functions that return the amino acids to the
left and right of p, respectively, considering the window size w. These functions can be

defined as follows:

S pl if p < w,
L(p,w) =
Slp —w:p| otherwise.
Slp+1:n] if w>n—np,
R(p,w) =

Slp+1:p+1+w] otherwise.

The algorithm iterates over each position p in the sequence S, starting from pga.¢ and

ending at penq. For each p, it performs the following steps:

1. Extracts the central amino acid a,.
2. Determines the left sequence L(p,w).
3. Determines the right sequence R(p, w).

4. Records the label associated with the position.
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ESM-1b fine-tuning

Fine-tuning of the ESM-1b model was performed by integrating a classification head into
the original architecture, as detailed in subsection “ESM-1b Model Architecture”. This
fine-tuning involves a retraining of all layers of the model. Thus, the initial model trained
for general protein sequence analysis is now tailored to epitope prediction task. To this
procedure, the dataset comprises sequences from higher-level taxa, as outlined in section
“Data extraction and preparation” of the main text and detailed in Supplementary Table
1. The fine-tuning process leverages the ESM-1b model’s capabilities to learn from our
specialized dataset, focusing on epitopes and non-epitopes present in these sequences.
In the fine-tuning phase, the ESM-1b model processes each training sample, extracted
through the sliding window technique. The fine-tuning is executed over three epochs and
the model learns to identify and differentiate between epitopes and non-epitopes in the
context of the higher-level taxa sequences.

The result of this procedure is a fine-tuned model specifically capable of identifying
epitopes in protein sequences derived from higher-level taxa. This model is now able to

generate enriched features to epitope prediction classification tasks.

Feature Calculation

In this step, the fine-tuned ESM-1b model, pre-trained with data from higher taxonomic
levels, is used to process the amino acid sequences and generate enriched features for
epitope prediction tasks at lower taxonomic levels. The complete protein sequence is fed
into the optimized ESM-1b model, enabling it to generate a more enriched representation.
From this output, only the labeled peptide regions are selected for training. Within this
identified regions of interest in the protein sequences, each amino acid is extracted and
represented as a 1280-dimensional vector. This feature representation, a numerical array
generated by the model, encodes the properties and contextual information that the
model has learned. More specifically, this vector representation reflects both its inherent

characteristics and its relational context in the protein sequence.

ESM-1b Model Architecture

To enable the fine tuning of ESM-1b in this work, we added a “Classification Head” layer
to the original model architecture, which is later removed to enable the extraction of
features from the taxon-optimised model. The architecture can be summarized by its key

components, which include:

Embeddings:
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o Word Embeddings: Convert each amino acid in a sequence to a 1280-dimensional
vector. The word embeddings are trainable, meaning their values are adjusted

during model training to improve task-specific performance.

o Position Embeddings: Provide positional context to each amino acid in sequences up
to 1026 positions long. Unlike the word embeddings, the position embeddings are
fixed and are not updated during training, ensuring that the positional information

remains consistent.
Encoder:
o Comprises 33 layers, each featuring:

— Self-Attention Mechanism: Allows each position to interact with every other

position in the sequence.

— Feed-Forward Network: Enhances the model output from the self-attention

mechanism by applying transformations.

— Layer Normalization: Applied for training stability.
Contact Prediction Head:

o A specialized component for predicting protein structure contacts. This layer in-
volves determining which pairs of amino acids within a protein sequence are in close

proximity to each other in the 3D structure, referred to as contacts.

The ESM-1b model, tailored for protein sequence analysis, comprises a 33-layer en-
coder, where each position in the protein sequence is represented by a 1280-dimensional
vector. While the model supports an embedding size of 1026, the practical window for
sequence analysis utilizes 1024 positions. This is due to the allocation of one special token

at the beginning and another at the end of the sequence.

Training and Validation Procedures

Cross-Validation

1. Test and Train Split: For each taxon, the data is split into five folds. One fold
is set aside for testing, and the remaining four are used for training and validation.
In this step, a nested cross-validation is performed using the remaining four folds:
three folds are used for training and one fold is used for validation, such that the
models after the hyperparameter tuning step are assessed on unseen data. The best

hyperparameters are defined during this process. After this, the model is retrained
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using all four folds, and the optimal threshold for MCC is determined. Finally, the

model’s performance is evaluated on the test set.

2. Hyperparameter Search: Random Forest hyperparameters are optimized using

Bayesian optimization as implemented in the Optuna package Akiba et al. [2019]:

e n_estimators (range: 100 to 500),

» max_depth (choices: None, 10, 20, 30),

e min_samples_split (range: 2 to 10),

e min_samples_leaf (range: 1 to 10),

» max_features (choices: sqrt, log2, None),
» bootstrap (choices: True, False),

« criterion (choices: gini, entropy)

Special Cases

Due to the scarcity of samples for Orthopozvirus, Corynebacterium, and Measles mor-
bilivirus, we followed a standard train-test procedure for these cases instead of cross-
validation. For each taxon, the data was split into two folds. One fold was set aside for
testing, and the remaining fold was used for training. Although cross-validation was not
used, the same Bayesian optimization process described earlier was followed to identify
the best hyperparameters. The optimal MCC threshold was determined during the train-

ing phase and is then applied to evaluate the model’s performance on the test dataset.

Performance Indicators

To guarantee a thorough evaluation and align with established benchmarks in the field, a
range of performance indicators is employed. These metrics not only allow for a compar-
ison with existing studies but also provide a detailed insight into the predictive accuracy
of the models under consideration. The definitions of these indicators involve key terms
such as TP (True Positives), TN (True Negatives), FP (False Positives), and FN (False

Negatives), which are fundamental to the formulae that follow.

« Positive Predictive Value (PPV): This metric measures the probability that
an identified amino acid is accurately part of an epitope sequence. It serves as
an indicator of the reliability of a model’s positive predictions. Such reliability is

relevant for justifying the allocation of resources toward experimental validation of
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predicted targets. The Positive Predictive Value (PPV) is commonly recognized in

the field as Precision.
TP

PPV = ——
V' =Tp1Fp

Negative Predictive Value (NPV): This metric assesses the likelihood that
an amino acid classified as not being part of an epitope is correctly identified.
It demonstrates the model’s proficiency in identifying amino acids that belong to

non-epitope peptide sequences.

TN

NPV = ———
TN + FN

Sensitivity (SENS): Sensitivity, also called the True Positive Rate (TPR) or
Recall, measures the model’s ability to correctly identify amino acids that are part
of epitope sequences. This metric is crucial for evaluating the model’s proficiency

in accurately detecting positive amino instances within epitopes.

TP

ENS = ——
S S TP+ FN

Specificity (SPEC): Specificity, or the True Negative Rate (TNR), is the analog

of sensitivity that focuses on the negative class.

TN

PEC=——"_
SPEC = N Fp

Balanced Accuracy (BACC): This metric accounts for potential class imbal-
ance by computing the average of sensitivity (true positive rate) and specificity
(true negative rate). Unlike standard accuracy, balanced accuracy provides a more
reliable evaluation in scenarios where one class may be underrepresented, which is

particularly relevant in epitope prediction tasks.

BACC = !

5 +

TP+ FN TN+ FP

< TP TN >

AUC (Area Under the ROC Curve)

AUC = /OIC(x) dr (1)

where C(x) denotes the curve of Sensitivity versus (1 - Specificity), derived by

varying the classification threshold from zero and one.
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e F1 Score

2 x PPV x SENS
F1 = PPV + SENS 2)

The F1 Score is a metric that balances Precision and Recall, making it useful for

evaluating binary classification models, especially when dealing with imbalanced
datasets. It combines Precision (the ability to correctly identify positive samples)
and Recall (the ability to capture all positive samples) into a single score. The F1

Score ranges from 0 to 1, where higher values indicate better model performance.

« MCC (Matthews Correlation Coefficient)

TP x TN — FP x FN
MCC = (3)
/(TP + FP)(TP + FN)(IN + FP)(TN + FN)

The Matthews Correlation Coefficient (MCC) is a metric that takes into account
True Positives (TP), True Negatives (TN), False Positives (FP), and False Nega-
tives (FN) to assess the performance of binary classification models. It produces
values between -1 and +1, where +1 indicates perfect prediction, 0 corresponds to
random prediction, and -1 reflects total disagreement between predictions and ac-

tual outcomes. MCC is particularly useful when dealing with imbalanced datasets.

88



Appendix B

89



Higher-level Lower-level
~
A Bordetella pertussis
7 - Pseudomonas aeruginosa
. g Escherichia coli
Non-Bacterial ==
Bamfordvirae + P
Pararnavirae + - ] Enterobacteriacea
Orthornavirae + - > Bacteria
Plat)_/helmlnthes + o=~ |77 = Mycobacterium tuberculosis
Apicomplexa + SO T
Sar RN ]
AN o Corynebacterium
NN Clostridium difficile
N Chlamydia trachomatis
7
3
A Orthopoxvirus
7 Lentivirus
7 o SARS-CoV-2
Non-Viral P e
Pseudomonadota + 3 P I Influenza A
Terrabacteria + - L Virus
Platyhelminthes + - o -
Apicomplexa + = T Measles morbilivirus
Sar N S~
Tl Filoviridae
Y A Mononegavirales
| Human Gammaherpesvirus 4
7/
~
> Schistosoma mansoni
Non-Eukaryotic Le?®
Pseudomonadota + e o Toxoplasma gondii
Terrabacteria + e N Eukaryotes
Bamfordvirae + | ~<f-----__| ( y
Pararnavirae + T~al N Bl = Plasmodium falciparum
Orthornavirae i RN
T Onchocerca volvulus
J

Figure 1: Set of unrelated groups used to establish the non-phylogenetic baselines. These pairs
of datasets are used to perform domain adaptation across unrelated biological groups, to test
our hypothesis about the effectiveness of using phylogenetically related data for the embedder
fine tuning. If the non-phylogenetic baseline models produced equivalent of favorable results,
the enhancements observed in epitope prediction tasks could be exclusively attributed to the
effect of fine tuning the representation with LBCE data, which would indicate that considering
phylogeny is unnecessary. Conversely, favorable results for the EpitopeTransfer models would
indicate the presence of some positive effect of the phylogeny-aware data filtering step.
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Appendix C

The estimated performance for each method on each dataset is presented. Method refers
to the employed approach, including the primary method, EpitopeTransfer, which
leverages phylogenetic information, and internal and external baselines. The internal
baselines are ESM-1b (650M) baseline, a pretrained protein language model fine-tuned
for epitope prediction, and Non-phylogenetic transfer (NPTransfer), a transfer
learning method that does not utilize phylogenetic relationships. The external baselines
include BepiPred 3.0, Epitope, and EpitopeVec, which are methods developed out-
side this study and are included for comparative evaluation. Dataset corresponds to the
data from 20 specific taxa, and Value represents the value of each presented metric. The
evaluated metrics include AUC (Area Under the Curve), F1 score, MCC (Matthews
Correlation Coefficient), Accuracy, PPV (Positive Predictive Value), NPV (Negative
Predictive Value), Sensitivity, and Specificity.

Table 1: Comparison of methods for AUC

Method Dataset Value
EpitopeTransfer |B. pertussis 0.555
BepiPred 3.0 B. pertussis 0.365
EpiDope B. pertussis 0.359
EpitopeVec B. pertussis 0.750
ESM-1b B. pertussis 0.473
NPTransfer B. pertussis 0.412
EpitopeTransfer |C. difficile 0.707
BepiPred 3.0 C. difficile 0.425
EpiDope C. difficile 0.744
EpitopeVec C. difficile 0.851
ESM-1b C. difficile 0.514
NPTransfer C. difficile 0.584
EpitopeTransfer |Corynebacterium 0.590
BepiPred 3.0 Corynebacterium 0.648
EpiDope Corynebacterium 0.733
EpitopeVec Corynebacterium 0.728
ESM-1b Corynebacterium 0.461
NPTransfer Corynebacterium 0.450
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Method Dataset Value
EpitopeTransfer |C. trachomatis 0.773
BepiPred 3.0 C. trachomatis 0.559
EpiDope C. trachomatis 0.665
EpitopeVec C. trachomatis 0.717
ESM-1b C. trachomatis 0.769
NPTransfer C. trachomatis 0.775
EpitopeTransfer |E. coli 0.853
BepiPred 3.0 E. coli 0.400
EpiDope E. coli 0.804
EpitopeVec E. coli 0.533
ESM-1b E. coli 0.855
NPTransfer E. coli 0.830
EpitopeTransfer |Enterobacteriaceae 0.826
BepiPred 3.0 Enterobacteriaceae 0.554
EpiDope Enterobacteriaceae 0.613
EpitopeVec Enterobacteriaceae 0.549
ESM-1b Enterobacteriaceae 0.722
NPTransfer Enterobacteriaceae 0.728
EpitopeTransfer |Filoviridae 0.972
BepiPred 3.0 Filoviridae 0.538
EpiDope Filoviridae 0.877
EpitopeVec Filoviridae 0.752
ESM-1b Filoviridae 0.944
NPTransfer Filoviridae 0.966
EpitopeTransfer |Human gammaherpesvirus 4 0.593
BepiPred 3.0 Human gammaherpesvirus 4 0.398
EpiDope Human gammaherpesvirus 4 0.617
EpitopeVec Human gammaherpesvirus 4 0.560
ESM-1b Human gammaherpesvirus 4 0.608
NPTransfer Human gammaherpesvirus 4 0.593
EpitopeTransfer |Influenza A 0.756
BepiPred 3.0 Influenza A 0.570
EpiDope Influenza A 0.523
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Method Dataset Value
EpitopeVec Influenza A 0.630
ESM-1b Influenza A 0.719
NPTransfer Influenza A 0.632
EpitopeTransfer |Lentivirus 0.789
BepiPred 3.0 Lentivirus 0.581
EpiDope Lentivirus 0.552
EpitopeVec Lentivirus 0.596
ESM-1b Lentivirus 0.794
NPTransfer Lentivirus 0.648
EpitopeTransfer | M. tuberculosis 0.478
BepiPred 3.0 M. tuberculosis 0.444
EpiDope M. tuberculosis 0.481
EpitopeVec M. tuberculosis 0.481
ESM-1b M. tuberculosis 0.506
NPTransfer M. tuberculosis 0.440
BepiPred 3.0 Measles morbilivirus 0.381
EpiDope Measles morbilivirus 0.501
EpitopeVec Measles morbilivirus 0.538
EpitopeTransfer | Measles morbilivirus 0.522
ESM-1b Measles morbilivirus 0.530
NPTransfer Measles morbilivirus 0.599
EpitopeTransfer | Mononegavirales 0.725
BepiPred 3.0 Mononegavirales 0.446
EpiDope Mononegavirales 0.817
EpitopeVec Mononegavirales 0.671
ESM-1b Mononegavirales 0.740
NPTransfer Mononegavirales 0.739
EpitopeTransfer |Orthopox 0.689
BepiPred 3.0 Orthopox 0.728
EpiDope Orthopox 0.688
EpitopeVec Orthopox 0.322
ESM-1b Orthopox 0.623
NPTransfer Orthopox 0.564
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Method Dataset Value
EpitopeTransfer |Ovolvulus 0.626
BepiPred 3.0 Ovolvulus 0.721
EpiDope Ovolvulus 0.495
EpitopeVec Ovolvulus 0.585
ESM-1b Ovolvulus 0.673
NPTransfer Ovolvulus 0.636
EpitopeTransfer |P. aeruginosa 0.721
BepiPred 3.0 P. aeruginosa 0.040
EpiDope P. aeruginosa 0.874
EpitopeVec P. aeruginosa 0.565
ESM-1b P. aeruginosa 0.669
NPTransfer P. aeruginosa 0.790
EpitopeTransfer |P. falciparum 0.810
BepiPred 3.0 P. falciparum 0.675
EpiDope P. falciparum 0.603
EpitopeVec P. falciparum 0.512
ESM-1b P. falciparum 0.792
NPTransfer P. falciparum 0.786
EpitopeTransfer |S. mansoni 0.557
BepiPred 3.0 S. mansoni 0.560
EpiDope S. mansoni 0.672
EpitopeVec S. mansoni 0.447
ESM-1b S. mansoni 0.544
NPTransfer S. mansoni 0.556
EpitopeTransfer |Sars-cov-2 0.547
BepiPred 3.0 Sars-cov-2 0.569
EpiDope Sars-cov-2 0.597
EpitopeVec Sars-cov-2 0.630
ESM-1b Sars-cov-2 0.539
NPTransfer Sars-cov-2 0.502
EpitopeTransfer |T. gondii 0.705
BepiPred 3.0 T. gondii 0.454
EpiDope T. gondii 0.466
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Method Dataset Value
EpitopeVec T. gondii 0.620
ESM-1b T. gondii 0.654
NPTransfer T. gondii 0.602
Table 2: Comparison of methods for F1
Method Dataset Value
EpitopeTransfer |B. pertussis 0.836
BepiPred 3.0 B. pertussis 0.778
EpiDope B. pertussis 0.288
EpitopeVec B. pertussis 0.754
ESM-1b B. pertussis 0.822
NPTransfer B. pertussis 0.836
EpitopeTransfer |C. difficile 0.236
BepiPred 3.0 C. difficile 0.000
EpiDope C. difficile 0.000
EpitopeVec C. difficile 0.282
ESM-1b C. difficile 0.177
NPTransfer C. difficile 0.171
EpitopeTransfer |Corynebacterium 0.557
BepiPred 3.0 Corynebacterium 0.303
EpiDope Corynebacterium 0.286
EpitopeVec Corynebacterium 0.672
ESM-1b Corynebacterium 0.454
NPTransfer Corynebacterium 0.360
EpitopeTransfer |C. trachomatis 0.717
BepiPred 3.0 C. trachomatis 0.583
EpiDope C. trachomatis 0.311
EpitopeVec C. trachomatis 0.624
ESM-1b C. trachomatis 0.618
NPTransfer C. trachomatis 0.711
EpitopeTransfer |E. coli 0.872
BepiPred 3.0 E. coli 0.375
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Method Dataset Value
EpiDope E. coli 0.340
EpitopeVec E. coli 0.628
ESM-1b E. coli 0.863
NPTransfer E. coli 0.874
EpitopeTransfer |Enterobacteriaceae 0.738
BepiPred 3.0 Enterobacteriaceae 0.434
EpiDope Enterobacteriaceae 0.188
EpitopeVec Enterobacteriaceae 0.534
ESM-1b Enterobacteriaceae 0.632
NPTransfer Enterobacteriaceae 0.619
EpitopeTransfer |Filoviridae 0.780
BepiPred 3.0 Filoviridae 0.235
EpiDope Filoviridae 0.316
EpitopeVec Filoviridae 0.271
ESM-1b Filoviridae 0.603
NPTransfer Filoviridae 0.742
EpitopeTransfer |Human gammaherpesvirus 4 0.444
BepiPred 3.0 Human gammaherpesvirus 4 0.273
EpiDope Human gammaherpesvirus 4 0.244
EpitopeVec Human gammaherpesvirus 4 0.508
ESM-1b Human gammaherpesvirus 4 0.377
NPTransfer Human gammaherpesvirus 4 0.429
EpitopeTransfer |Influenza A 0.818
BepiPred 3.0 Influenza A 0.539
EpiDope Influenza A 0.206
EpitopeVec Influenza A 0.798
ESM-1b Influenza A 0.824
NPTransfer Influenza A 0.814
EpitopeTransfer |Lentivirus 0.925
BepiPred 3.0 Lentivirus 0.490
EpiDope Lentivirus 0.457
EpitopeVec Lentivirus 0.571
ESM-1b Lentivirus 0.877

96




Method Dataset Value
NPTransfer Lentivirus 0.847
EpitopeTransfer | M. tuberculosis 0.586
BepiPred 3.0 M. tuberculosis 0.254
EpiDope M. tuberculosis 0.155
EpitopeVec M. tuberculosis 0.510
ESM-1b M. tuberculosis 0.648
NPTransfer M. tuberculosis 0.578
BepiPred 3.0 Measles morbilivirus 0.281
EpiDope Measles morbilivirus 0.356
EpitopeVec Measles morbilivirus 0.587
EpitopeTransfer | Measles morbilivirus 0.000
ESM-1b Measles morbilivirus 0.000
NPTransfer Measles morbilivirus 0.000
EpitopeTransfer | Mononegavirales 0.565
BepiPred 3.0 Mononegavirales 0.271
EpiDope Mononegavirales 0.499
EpitopeVec Mononegavirales 0.495
ESM-1b Mononegavirales 0.593
NPTransfer Mononegavirales 0.547
EpitopeTransfer |Orthopox 0.384
BepiPred 3.0 Orthopox 0.492
EpiDope Orthopox 0.351
EpitopeVec Orthopox 0.138
ESM-1b Orthopox 0.298
NPTransfer Orthopox 0.274
EpitopeTransfer | Ovolvulus 0.362
BepiPred 3.0 Ovolvulus 0.364
EpiDope Ovolvulus 0.053
EpitopeVec Ovolvulus 0.262
ESM-1b Ovolvulus 0.250
NPTransfer Ovolvulus 0.347
EpitopeTransfer |P. aeruginosa 0.835
BepiPred 3.0 P. aeruginosa 0.000
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Method Dataset Value
EpiDope P. aeruginosa 0.116
EpitopeVec P. aeruginosa 0.698
ESM-1b P. aeruginosa 0.691
NPTransfer P. aeruginosa 0.581
EpitopeTransfer |P. falciparum 0.826
BepiPred 3.0 P. falciparum 0.372
EpiDope P. falciparum 0.431
EpitopeVec P. falciparum 0.642
ESM-1b P. falciparum 0.815
NPTransfer P. falciparum 0.784
EpitopeTransfer |S. mansoni 0.437
BepiPred 3.0 S. mansoni 0.367
EpiDope S. mansoni 0.370
EpitopeVec S. mansoni 0.296
ESM-1b S. mansoni 0.330
NPTransfer S. mansoni 0.220
EpitopeTransfer |Sars-cov-2 0.120
BepiPred 3.0 Sars-cov-2 0.136
EpiDope Sars-cov-2 0.262
EpitopeVec Sars-cov-2 0.222
ESM-1b Sars-cov-2 0.164
NPTransfer Sars-cov-2 0.119
EpitopeTransfer |T. gondii 0.811
BepiPred 3.0 T. gondii 0.703
EpiDope T. gondii 0.297
EpitopeVec T. gondii 0.682
ESM-1b T. gondii 0.806
NPTransfer T. gondii 0.718
Table 3: Comparison of methods for MCC
Method Dataset Value
EpitopeTransfer |B. pertussis 0.000
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Method Dataset Value
BepiPred 3.0 B. pertussis -0.008
EpiDope B. pertussis -0.108
EpitopeVec B. pertussis 0.351
ESM-1b B. pertussis -0.090
NPTransfer B. pertussis 0.000
EpitopeTransfer |C. difficile 0.173
BepiPred 3.0 C. difficile -0.027
EpiDope C. difficile 0.000
EpitopeVec C. difficile 0.279
ESM-1b C. difficile 0.052
NPTransfer C. difficile 0.000
EpitopeTransfer |Corynebacterium 0.064
BepiPred 3.0 Corynebacterium 0.247
EpiDope Corynebacterium 0.309
EpitopeVec Corynebacterium 0.315
ESM-1b Corynebacterium -0.134
NPTransfer Corynebacterium -0.022
EpitopeTransfer |C. trachomatis 0.447
BepiPred 3.0 C. trachomatis -0.055
EpiDope C. trachomatis 0.137
EpitopeVec C. trachomatis 0.286
ESM-1b C. trachomatis 0.385
NPTransfer C. trachomatis 0.440
EpitopeTransfer |E. coli 0.325
BepiPred 3.0 E. coli -0.136
EpiDope E. coli 0.248
EpitopeVec E. coli 0.031
ESM-1b E. coli 0.217
NPTransfer E. coli 0.349
EpitopeTransfer |Enterobacteriaceae 0.479
BepiPred 3.0 Enterobacteriaceae 0.054
EpiDope Enterobacteriaceae 0.144
EpitopeVec Enterobacteriaceae 0.061
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Method Dataset Value
ESM-1b Enterobacteriaceae -0.035
NPTransfer Enterobacteriaceae -0.113
EpitopeTransfer |Filoviridae 0.766
BepiPred 3.0 Filoviridae 0.143
EpiDope Filoviridae 0.240
EpitopeVec Filoviridae 0.202
ESM-1b Filoviridae 0.558
NPTransfer Filoviridae 0.716
EpitopeTransfer |Human gammaherpesvirus 4 0.241
BepiPred 3.0 Human gammaherpesvirus 4 -0.180
EpiDope Human gammaherpesvirus 4 0.068
EpitopeVec Human gammaherpesvirus 4 0.070
ESM-1b Human gammaherpesvirus 4 0.249
NPTransfer Human gammaherpesvirus 4 0.209
EpitopeTransfer |Influenza A 0.176
BepiPred 3.0 Influenza A 0.239
EpiDope Influenza A 0.054
EpitopeVec Influenza A 0.139
ESM-1b Influenza A -0.058
NPTransfer Influenza A 0.099
EpitopeTransfer |Lentivirus 0.770
BepiPred 3.0 Lentivirus 0.376
EpiDope Lentivirus 0.033
EpitopeVec Lentivirus 0.067
ESM-1b Lentivirus 0.615
NPTransfer Lentivirus 0.469
EpitopeTransfer |M. tuberculosis -0.031
BepiPred 3.0 M. tuberculosis 0.029
EpiDope M. tuberculosis 0.033
EpitopeVec M. tuberculosis -0.008
ESM-1b M. tuberculosis 0.039
NPTransfer M. tuberculosis -0.056
BepiPred 3.0 Measles morbilivirus -0.310
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Method Dataset Value
EpiDope Measles morbilivirus 0.079
EpitopeVec Measles morbilivirus 0.091
EpitopeTransfer | Measles morbilivirus 0.000
ESM-1b Measles morbilivirus 0.000
NPTransfer Measles morbilivirus 0.000
EpitopeTransfer | Mononegavirales 0.286
BepiPred 3.0 Mononegavirales -0.136
EpiDope Mononegavirales 0.336
EpitopeVec Mononegavirales 0.170
ESM-1b Mononegavirales 0.321
NPTransfer Mononegavirales 0.209
EpitopeTransfer |Orthopox 0.226
BepiPred 3.0 Orthopox 0.375
EpiDope Orthopox 0.163
EpitopeVec Orthopox -0.206
ESM-1b Orthopox 0.101
NPTransfer Orthopox -0.020
EpitopeTransfer |Ovolvulus 0.272
BepiPred 3.0 Ovolvulus 0.277
EpiDope Ovolvulus -0.055
EpitopeVec Ovolvulus 0.064
ESM-1b Ovolvulus 0.202
NPTransfer Ovolvulus 0.210
EpitopeTransfer |P. aeruginosa 0.147
BepiPred 3.0 P. aeruginosa -0.258
EpiDope P. aeruginosa 0.137
EpitopeVec P. aeruginosa 0.145
ESM-1b P. aeruginosa 0.263
NPTransfer P. aeruginosa 0.350
EpitopeTransfer |P. falciparum 0.505
BepiPred 3.0 P. falciparum 0.119
EpiDope P. falciparum 0.088
EpitopeVec P. falciparum 0.018
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Method Dataset Value
ESM-1b P. falciparum 0.453
NPTransfer P. falciparum 0.437
EpitopeTransfer |S. mansoni 0.056
BepiPred 3.0 S. mansoni 0.126
EpiDope S. mansoni 0.185
EpitopeVec S. mansoni -0.016
ESM-1b S. mansoni 0.093
NPTransfer S. mansoni 0.120
EpitopeTransfer |Sars-cov-2 0.043
BepiPred 3.0 Sars-cov-2 0.011
EpiDope Sars-cov-2 0.169
EpitopeVec Sars-cov-2 0.101
ESM-1b Sars-cov-2 0.072
NPTransfer Sars-cov-2 0.037
EpitopeTransfer |T. gondii 0.218
BepiPred 3.0 T. gondii -0.070
EpiDope T. gondii 0.092
EpitopeVec T. gondii 0.084
ESM-1b T. gondii 0.128
NPTransfer T. gondii 0.108

Table 4: Comparison of methods for Balanced Accuracy

Method Dataset Value
EpitopeTransfer |B. pertussis 0.500
BepiPred 3.0 B. pertussis 0.497
EpiDope B. pertussis 0.451
EpitopeVec B. pertussis 0.694
ESM-1b B. pertussis 0.486
NPTransfer B. pertussis 0.500
EpitopeTransfer |C. difficile 0.647
BepiPred 3.0 C. difficile 0.496
EpiDope C. difficile 0.500
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Method Dataset Value
EpitopeVec C. difficile 0.737
ESM-1b C. difficile 0.522
NPTransfer C. difficile 0.500
EpitopeTransfer |Corynebacterium 0.531
BepiPred 3.0 Corynebacterium 0.576
EpiDope Corynebacterium 0.583
EpitopeVec Corynebacterium 0.655
ESM-1b Corynebacterium 0.433
NPTransfer Corynebacterium 0.490
EpitopeTransfer |C. trachomatis 0.723
BepiPred 3.0 C. trachomatis 0.476
EpiDope C. trachomatis 0.549
EpitopeVec C. trachomatis 0.642
ESM-1b C. trachomatis 0.682
NPTransfer C. trachomatis 0.719
EpitopeTransfer |E. coli 0.574
BepiPred 3.0 E. coli 0.429
EpiDope E. coli 0.603
EpitopeVec E. coli 0.518
ESM-1b E. coli 0.536
NPTransfer E. coli 0.604
EpitopeTransfer | Enterobacteriaceae 0.739
BepiPred 3.0 Enterobacteriaceae 0.526
EpiDope Enterobacteriaceae 0.536
EpitopeVec Enterobacteriaceae 0.530
ESM-1b Enterobacteriaceae 0.495
NPTransfer Enterobacteriaceae 0.481
EpitopeTransfer |Filoviridae 0.947
BepiPred 3.0 Filoviridae 0.616
EpiDope Filoviridae 0.618
EpitopeVec Filoviridae 0.667
ESM-1b Filoviridae 0.817
NPTransfer Filoviridae 0.898
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Method Dataset Value
EpitopeTransfer |Human gammaherpesvirus 4 0.600
BepiPred 3.0 Human gammaherpesvirus 4 0.415
EpiDope Human gammaherpesvirus 4 0.523
EpitopeVec Human gammaherpesvirus 4 0.535
ESM-1b Human gammaherpesvirus 4 0.590
NPTransfer Human gammaherpesvirus 4 0.588
EpitopeTransfer |Influenza A 0.579
BepiPred 3.0 Influenza A 0.629
EpiDope Influenza A 0.519
EpitopeVec Influenza A 0.566
ESM-1b Influenza A 0.483
NPTransfer Influenza A 0.541
EpitopeTransfer |Lentivirus 0.844
BepiPred 3.0 Lentivirus 0.662
EpiDope Lentivirus 0.516
EpitopeVec Lentivirus 0.535
ESM-1b Lentivirus 0.794
NPTransfer Lentivirus 0.675
EpitopeTransfer |M. tuberculosis 0.486
BepiPred 3.0 M. tuberculosis 0.511
EpiDope M. tuberculosis 0.509
EpitopeVec M. tuberculosis 0.496
ESM-1b M. tuberculosis 0.515
NPTransfer M. tuberculosis 0.475
BepiPred 3.0 Measles morbilivirus 0.346
EpiDope Measles morbilivirus 0.533
EpitopeVec Measles morbilivirus 0.543
EpitopeTransfer | Measles morbilivirus 0.500
ESM-1b Measles morbilivirus 0.500
NPTransfer Measles morbilivirus 0.500
EpitopeTransfer | Mononegavirales 0.651
BepiPred 3.0 Mononegavirales 0.430
EpiDope Mononegavirales 0.646
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Method Dataset Value
EpitopeVec Mononegavirales 0.589
ESM-1b Mononegavirales 0.667
NPTransfer Mononegavirales 0.581
EpitopeTransfer | Orthopox 0.631
BepiPred 3.0 Orthopox 0.699
EpiDope Orthopox 0.605
EpitopeVec Orthopox 0.365
ESM-1b Orthopox 0.562
NPTransfer Orthopox 0.488
EpitopeTransfer |Ovolvulus 0.620
BepiPred 3.0 Ovolvulus 0.687
EpiDope Ovolvulus 0.480
EpitopeVec Ovolvulus 0.545
ESM-1b Ovolvulus 0.568
NPTransfer Ovolvulus 0.647
EpitopeTransfer |P. aeruginosa 0.515
BepiPred 3.0 P. aeruginosa 0.455
EpiDope P. aeruginosa 0.531
EpitopeVec P. aeruginosa 0.579
ESM-1b P. aeruginosa 0.645
NPTransfer P. aeruginosa 0.680
EpitopeTransfer |P. falciparum 0.743
BepiPred 3.0 P. falciparum 0.550
EpiDope P. falciparum 0.541
EpitopeVec P. falciparum 0.509
ESM-1b P. falciparum 0.711
NPTransfer P. falciparum 0.721
EpitopeTransfer |S. mansoni 0.525
BepiPred 3.0 S. mansoni 0.562
EpiDope S. mansoni 0.581
EpitopeVec S. mansoni 0.491
ESM-1b S. mansoni 0.544
NPTransfer S. mansoni 0.538
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Method Dataset Value
EpitopeTransfer |Sars-cov-2 0.518
BepiPred 3.0 Sars-cov-2 0.507
EpiDope Sars-cov-2 0.592
EpitopeVec Sars-cov-2 0.584
ESM-1b Sars-cov-2 0.535
NPTransfer Sars-cov-2 0.516
EpitopeTransfer |T. gondii 0.582
BepiPred 3.0 T. gondii 0.468
EpiDope T. gondii 0.537
EpitopeVec T. gondii 0.544
ESM-1b T. gondii 0.539
NPTransfer T. gondii 0.554
Table 5: Comparison of methods for PPV
Method Dataset Value
EpitopeTransfer |B. pertussis 0.718
BepiPred 3.0 B. pertussis 0.717
EpiDope B. pertussis 0.625
EpitopeVec B. pertussis 0.857
ESM-1b B. pertussis 0.712
NPTransfer B. pertussis 0.718
EpitopeTransfer |C. difficile 0.138
BepiPred 3.0 C. difficile 0.000
EpiDope C. difficile 0.000
EpitopeVec C. difficile 0.164
ESM-1b C. difficile 0.097
NPTransfer C. difficile 0.093
EpitopeTransfer |Corynebacterium 0.500
BepiPred 3.0 Corynebacterium 0.833
EpiDope Corynebacterium 1.000
EpitopeVec Corynebacterium 0.603
ESM-1b Corynebacterium 0.415
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Method Dataset Value
NPTransfer Corynebacterium 0.457
EpitopeTransfer |C. trachomatis 0.744
BepiPred 3.0 C. trachomatis 0.491
EpiDope C. trachomatis 0.667
EpitopeVec C. trachomatis 0.667
ESM-1b C. trachomatis 0.780
NPTransfer C. trachomatis 0.742
EpitopeTransfer |E. coli 0.776
BepiPred 3.0 E. coli 0.656
EpiDope E. coli 1.000
EpitopeVec E. coli 0.759
ESM-1b E. coli 0.760
NPTransfer E. coli 0.789
EpitopeTransfer |Enterobacteriaceae 0.691
BepiPred 3.0 Enterobacteriaceae 0.507
EpiDope Enterobacteriaceae 0.733
EpitopeVec Enterobacteriaceae 0.497
ESM-1b Enterobacteriaceae 0.467
NPTransfer Enterobacteriaceae 0.460
EpitopeTransfer |Filoviridae 0.663
BepiPred 3.0 Filoviridae 0.138
EpiDope Filoviridae 0.321
EpitopeVec Filoviridae 0.164
ESM-1b Filoviridae 0.526
NPTransfer Filoviridae 0.662
EpitopeTransfer | Human gammaherpesvirus 4 0.680
BepiPred 3.0 Human gammaherpesvirus 4 0.326
EpiDope Human gammaherpesvirus 4 0.542
EpitopeVec Human gammaherpesvirus 4 0.491
ESM-1b Human gammaherpesvirus 4 0.746
NPTransfer Human gammaherpesvirus 4 0.647
EpitopeTransfer |Influenza A 0.787
BepiPred 3.0 Influenza A 0.901
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Method Dataset Value
EpiDope Influenza A 0.817
EpitopeVec Influenza A 0.782
ESM-1b Influenza A 0.743
NPTransfer Influenza A 0.768
EpitopeTransfer |Lentivirus 0.860
BepiPred 3.0 Lentivirus 1.000
EpiDope Lentivirus 0.680
EpitopeVec Lentivirus 0.692
ESM-1b Lentivirus 0.844
NPTransfer Lentivirus 0.750
EpitopeTransfer |M. tuberculosis 0.509
BepiPred 3.0 M. tuberculosis 0.553
EpiDope M. tuberculosis 0.574
EpitopeVec M. tuberculosis 0.515
ESM-1b M. tuberculosis 0.528
NPTransfer M. tuberculosis 0.501
BepiPred 3.0 Measles morbilivirus 0.293
EpiDope Measles morbilivirus 0.542
EpitopeVec Measles morbilivirus 0.502
EpitopeTransfer | Measles morbilivirus 0.000
ESM-1b Measles morbilivirus 0.000
NPTransfer Measles morbilivirus 0.000
EpitopeTransfer | Mononegavirales 0.481
BepiPred 3.0 Mononegavirales 0.259
EpiDope Mononegavirales 0.646
EpitopeVec Mononegavirales 0.427
ESM-1b Mononegavirales 0.470
NPTransfer Mononegavirales 0.385
EpitopeTransfer |Orthopox 0.318
BepiPred 3.0 Orthopox 0.456
EpiDope Orthopox 0.228
EpitopeVec Orthopox 0.094
ESM-1b Orthopox 0.233
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Method Dataset Value
NPTransfer Orthopox 0.171
EpitopeTransfer | Ovolvulus 0.423
BepiPred 3.0 Ovolvulus 0.225
EpiDope Ovolvulus 0.080
EpitopeVec Ovolvulus 0.176
ESM-1b Ovolvulus 0.432
NPTransfer Ovolvulus 0.227
EpitopeTransfer |P. aeruginosa 0.717
BepiPred 3.0 P. aeruginosa 0.000
EpiDope P. aeruginosa 1.000
EpitopeVec P. aeruginosa 0.765
ESM-1b P. aeruginosa 0.828
NPTransfer P. aeruginosa 0.944
EpitopeTransfer |P. falciparum 0.793
BepiPred 3.0 P. falciparum 0.736
EpiDope P. falciparum 0.693
EpitopeVec P. falciparum 0.631
ESM-1b P. falciparum 0.763
NPTransfer P. falciparum 0.795
EpitopeTransfer |S. mansoni 0.297
BepiPred 3.0 S. mansoni 0.379
EpiDope S. mansoni 0.454
EpitopeVec S. mansoni 0.274
ESM-1b S. mansoni 0.358
NPTransfer S. mansoni 0.455
EpitopeTransfer |Sars-cov-2 0.151
BepiPred 3.0 Sars-cov-2 0.110
EpiDope Sars-cov-2 0.238
EpitopeVec Sars-cov-2 0.135
ESM-1b Sars-cov-2 0.170
NPTransfer Sars-cov-2 0.142
EpitopeTransfer |T. gondii 0.730
BepiPred 3.0 T. gondii 0.671
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Method Dataset Value
EpiDope T. gondii 0.787
EpitopeVec T. gondii 0.720
ESM-1b T. gondii 0.708
NPTransfer T. gondii 0.724
Table 6: Comparison of methods for NPV
Method Dataset Value
EpitopeTransfer |B. pertussis 0.000
BepiPred 3.0 B. pertussis 0.273
EpiDope B. pertussis 0.256
EpitopeVec B. pertussis 0.462
ESM-1b B. pertussis 0.000
NPTransfer B. pertussis 0.000
EpitopeTransfer |C. difficile 0.964
BepiPred 3.0 C. difficile 0.906
EpiDope C. difficile 0.907
EpitopeVec C. difficile 1.000
ESM-1b C. difficile 0.964
NPTransfer C. difficile 0.000
EpitopeTransfer |Corynebacterium 0.565
BepiPred 3.0 Corynebacterium 0.569
EpiDope Corynebacterium 0.571
EpitopeVec Corynebacterium 0.717
ESM-1b Corynebacterium 0.449
NPTransfer Corynebacterium 0.519
EpitopeTransfer |C. trachomatis 0.704
BepiPred 3.0 C. trachomatis 0.446
EpiDope C. trachomatis 0.522
EpitopeVec C. trachomatis 0.621
ESM-1b C. trachomatis 0.629
NPTransfer C. trachomatis 0.699
EpitopeTransfer |E. coli 0.941
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Method Dataset Value
BepiPred 3.0 E. coli 0.215
EpiDope E. coli 0.299
EpitopeVec E. coli 0.268
ESM-1b E. coli 0.889
NPTransfer E. coli 0.800
EpitopeTransfer |Enterobacteriaceae 0.789
BepiPred 3.0 Enterobacteriaceae 0.550
EpiDope Enterobacteriaceae 0.550
EpitopeVec Enterobacteriaceae 0.563
ESM-1b Enterobacteriaceae 0.409
NPTransfer Enterobacteriaceae 0.212
EpitopeTransfer |Filoviridae 0.994
BepiPred 3.0 Filoviridae 0.949
EpiDope Filoviridae 0.922
EpitopeVec Filoviridae 0.958
ESM-1b Filoviridae 0.965
NPTransfer Filoviridae 0.982
EpitopeTransfer |Human gammaherpesvirus 4 0.609
BepiPred 3.0 Human gammaherpesvirus 4 0.483
EpiDope Human gammaherpesvirus 4 0.559
EpitopeVec Human gammaherpesvirus 4 0.579
ESM-1b Human gammaherpesvirus 4 0.598
NPTransfer Human gammaherpesvirus 4 0.601
EpitopeTransfer |Influenza A 0.408
BepiPred 3.0 Influenza A 0.321
EpiDope Influenza A 0.258
EpitopeVec Influenza A 0.364
ESM-1b Influenza A 0.157
NPTransfer Influenza A 0.350
EpitopeTransfer |Lentivirus 1.000
BepiPred 3.0 Lentivirus 0.435
EpiDope Lentivirus 0.353
EpitopeVec Lentivirus 0.372
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Method Dataset Value
ESM-1b Lentivirus 0.800
NPTransfer Lentivirus 0.879
EpitopeTransfer |M. tuberculosis 0.458
BepiPred 3.0 M. tuberculosis 0.488
EpiDope M. tuberculosis 0.486
EpitopeVec M. tuberculosis 0.477
ESM-1b M. tuberculosis 0.524
NPTransfer M. tuberculosis 0.438
BepiPred 3.0 Measles morbilivirus 0.395
EpiDope Measles morbilivirus 0.552
EpitopeVec Measles morbilivirus 0.593
EpitopeTransfer | Measles morbilivirus 0.530
ESM-1b Measles morbilivirus 0.530
NPTransfer Measles morbilivirus 0.530
EpitopeTransfer | Mononegavirales 0.790
BepiPred 3.0 Mononegavirales 0.608
EpiDope Mononegavirales 0.742
EpitopeVec Mononegavirales 0.734
ESM-1b Mononegavirales 0.839
NPTransfer Mononegavirales 0.885
EpitopeTransfer |Orthopox 0.876
BepiPred 3.0 Orthopox 0.897
EpiDope Orthopox 0.898
EpitopeVec Orthopox 0.749
ESM-1b Orthopox 0.850
NPTransfer Orthopox 0.812
EpitopeTransfer |Ovolvulus 0.885
BepiPred 3.0 Ovolvulus 0.980
EpiDope Ovolvulus 0.845
EpitopeVec Ovolvulus 0.870
ESM-1b Ovolvulus 0.868
NPTransfer Ovolvulus 0.923
EpitopeTransfer |P. aeruginosa 1.000
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Method Dataset Value
BepiPred 3.0 P. aeruginosa 0.270
EpiDope P. aeruginosa 0.303
EpitopeVec P. aeruginosa 0.370
ESM-1b P. aeruginosa 0.411
NPTransfer P. aeruginosa 0.397
EpitopeTransfer |P. falciparum 0.732
BepiPred 3.0 P. falciparum 0.405
EpiDope P. falciparum 0.402
EpitopeVec P. falciparum 0.387
ESM-1b P. falciparum 0.723
NPTransfer P. falciparum 0.639
EpitopeTransfer |S. mansoni 0.765
BepiPred 3.0 S. mansoni 0.750
EpiDope S. mansoni 0.757
EpitopeVec S. mansoni 0.710
ESM-1b S. mansoni 0.739
NPTransfer S. mansoni 0.733
EpitopeTransfer |Sars-cov-2 0.901
BepiPred 3.0 Sars-cov-2 0.899
EpiDope Sars-cov-2 0.917
EpitopeVec Sars-cov-2 0.927
ESM-1b Sars-cov-2 0.905
NPTransfer Sars-cov-2 0.901
EpitopeTransfer |T. gondii 0.561
BepiPred 3.0 T. gondii 0.254
EpiDope T. gondii 0.329
EpitopeVec T. gondii 0.360
ESM-1b T. gondii 0.500
NPTransfer T. gondii 0.383
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Table 7: Comparison of methods for Sensitivity

Method Dataset Value
EpitopeTransfer |B. pertussis 1.000
BepiPred 3.0 B. pertussis 0.850
EpiDope B. pertussis 0.187
EpitopeVec B. pertussis 0.673
ESM-1b B. pertussis 0.972
NPTransfer B. pertussis 1.000
EpitopeTransfer |C. difficile 0.829
BepiPred 3.0 C. difficile 0.000
EpiDope C. difficile 0.000
EpitopeVec C. difficile 1.000
ESM-1b C. difficile 0.976
NPTransfer C. difficile 1.000
EpitopeTransfer |Corynebacterium 0.630
BepiPred 3.0 Corynebacterium 0.185
EpiDope Corynebacterium 0.167
EpitopeVec Corynebacterium 0.759
ESM-1b Corynebacterium 0.500
NPTransfer Corynebacterium 0.296
EpitopeTransfer |C. trachomatis 0.691
BepiPred 3.0 C. trachomatis 0.719
EpiDope C. trachomatis 0.203
EpitopeVec C. trachomatis 0.586
ESM-1b C. trachomatis 0.512
NPTransfer C. trachomatis 0.684
EpitopeTransfer |E. coli 0.997
BepiPred 3.0 E. coli 0.263
EpiDope E. coli 0.205
EpitopeVec E. coli 0.535
ESM-1b E. coli 0.997
NPTransfer E. coli 0.981
EpitopeTransfer |Enterobacteriaceae 0.793
BepiPred 3.0 Enterobacteriaceae 0.380
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Method Dataset Value
EpiDope Enterobacteriaceae 0.108
EpitopeVec Enterobacteriaceae 0.575
ESM-1b Enterobacteriaceae 0.975
NPTransfer Enterobacteriaceae 0.949
EpitopeTransfer |Filoviridae 0.948
BepiPred 3.0 Filoviridae 0.793
EpiDope Filoviridae 0.310
EpitopeVec Filoviridae 0.793
ESM-1b Filoviridae 0.707
NPTransfer Filoviridae 0.845
EpitopeTransfer |Human gammaherpesvirus 4 0.330
BepiPred 3.0 Human gammaherpesvirus 4 0.235
EpiDope Human gammaherpesvirus 4 0.158
EpitopeVec Human gammaherpesvirus 4 0.526
ESM-1b Human gammaherpesvirus 4 0.252
NPTransfer Human gammaherpesvirus 4 0.321
EpitopeTransfer |Influenza A 0.852
BepiPred 3.0 Influenza A 0.384
EpiDope Influenza A 0.118
EpitopeVec Influenza A 0.815
ESM-1b Influenza A 0.924
NPTransfer Influenza A 0.866
EpitopeTransfer |Lentivirus 1.000
BepiPred 3.0 Lentivirus 0.324
EpiDope Lentivirus 0.345
EpitopeVec Lentivirus 0.486
ESM-1b Lentivirus 0.912
NPTransfer Lentivirus 0.973
EpitopeTransfer |M. tuberculosis 0.691
BepiPred 3.0 M. tuberculosis 0.165
EpiDope M. tuberculosis 0.090
EpitopeVec M. tuberculosis 0.505
ESM-1b M. tuberculosis 0.838
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Method Dataset Value
NPTransfer M. tuberculosis 0.682
BepiPred 3.0 Measles morbilivirus 0.271
EpiDope Measles morbilivirus 0.265
EpitopeVec Measles morbilivirus 0.706
EpitopeTransfer | Measles morbilivirus 0.000
ESM-1b Measles morbilivirus 0.000
NPTransfer Measles morbilivirus 0.000
EpitopeTransfer | Mononegavirales 0.685
BepiPred 3.0 Mononegavirales 0.285
EpiDope Mononegavirales 0.407
EpitopeVec Mononegavirales 0.587
ESM-1b Mononegavirales 0.804
NPTransfer Mononegavirales 0.946
EpitopeTransfer |Orthopox 0.483
BepiPred 3.0 Orthopox 0.534
EpiDope Orthopox 0.759
EpitopeVec Orthopox 0.259
ESM-1b Orthopox 0.414
NPTransfer Orthopox 0.690
EpitopeTransfer |Ovolvulus 0.317
BepiPred 3.0 Ovolvulus 0.952
EpiDope Ovolvulus 0.039
EpitopeVec Ovolvulus 0.513
ESM-1b Ovolvulus 0.176
NPTransfer Ovolvulus 0.734
EpitopeTransfer |P. aeruginosa 1.000
BepiPred 3.0 P. aeruginosa 0.000
EpiDope P. aeruginosa 0.062
EpitopeVec P. aeruginosa 0.642
ESM-1b P. aeruginosa 0.593
NPTransfer P. aeruginosa 0.420
EpitopeTransfer |P. falciparum 0.863
BepiPred 3.0 P. falciparum 0.249
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Method Dataset Value
EpiDope P. falciparum 0.313
EpitopeVec P. falciparum 0.654
ESM-1b P. falciparum 0.873
NPTransfer P. falciparum 0.773
EpitopeTransfer |S. mansoni 0.826
BepiPred 3.0 S. mansoni 0.356
EpiDope S. mansoni 0.312
EpitopeVec S. mansoni 0.321
ESM-1b S. mansoni 0.305
NPTransfer S. mansoni 0.145
EpitopeTransfer |Sars-cov-2 0.099
BepiPred 3.0 Sars-cov-2 0.178
EpiDope Sars-cov-2 0.290
EpitopeVec Sars-cov-2 0.620
ESM-1b Sars-cov-2 0.159
NPTransfer Sars-cov-2 0.103
EpitopeTransfer |T. gondii 0.911
BepiPred 3.0 T. gondii 0.738
EpiDope T. gondii 0.183
EpitopeVec T. gondii 0.649
ESM-1b T. gondii 0.936
NPTransfer T. gondii 0.713

Table 8: Comparison of methods for Specificity

Method Dataset Value
EpitopeTransfer |B. pertussis 0.000
BepiPred 3.0 B. pertussis 0.143
EpiDope B. pertussis 0.714
EpitopeVec B. pertussis 0.714
ESM-1b B. pertussis 0.000
NPTransfer B. pertussis 0.000
EpitopeTransfer |C. difficile 0.465
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Method Dataset Value
BepiPred 3.0 C. difficile 0.992
EpiDope C. difficile 1.000
EpitopeVec C. difficile 0.475
ESM-1b C. difficile 0.068
NPTransfer C. difficile 0.000
EpitopeTransfer |Corynebacterium 0.433
BepiPred 3.0 Corynebacterium 0.967
EpiDope Corynebacterium 1.000
EpitopeVec Corynebacterium 0.550
ESM-1b Corynebacterium 0.367
NPTransfer Corynebacterium 0.683
EpitopeTransfer |C. trachomatis 0.755
BepiPred 3.0 C. trachomatis 0.233
EpiDope C. trachomatis 0.896
EpitopeVec C. trachomatis 0.699
ESM-1b C. trachomatis 0.851
NPTransfer C. trachomatis 0.755
EpitopeTransfer |E. coli 0.151
BepiPred 3.0 E. coli 0.594
EpiDope E. coli 1.000
EpitopeVec E. coli 0.500
ESM-1b E. coli 0.075
NPTransfer E. coli 0.226
EpitopeTransfer | Enterobacteriaceae 0.686
BepiPred 3.0 Enterobacteriaceae 0.672
EpiDope Enterobacteriaceae 0.965
EpitopeVec Enterobacteriaceae 0.485
ESM-1b Enterobacteriaceae 0.016
NPTransfer Enterobacteriaceae 0.012
EpitopeTransfer |Filoviridae 0.945
BepiPred 3.0 Filoviridae 0.439
EpiDope Filoviridae 0.926
EpitopeVec Filoviridae 0.541
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Method Dataset Value
ESM-1b Filoviridae 0.928
NPTransfer Filoviridae 0.951
EpitopeTransfer |Human gammaherpesvirus 4 0.871
BepiPred 3.0 Human gammaherpesvirus 4 0.595
EpiDope Human gammaherpesvirus 4 0.889
EpitopeVec Human gammaherpesvirus 4 0.545
ESM-1b Human gammaherpesvirus 4 0.928
NPTransfer Human gammaherpesvirus 4 0.854
EpitopeTransfer |Influenza A 0.307
BepiPred 3.0 Influenza A 0.873
EpiDope Influenza A 0.921
EpitopeVec Influenza A 0.317
ESM-1b Influenza A 0.042
NPTransfer Influenza A 0.217
EpitopeTransfer |Lentivirus 0.688
BepiPred 3.0 Lentivirus 1.000
EpiDope Lentivirus 0.688
EpitopeVec Lentivirus 0.584
ESM-1b Lentivirus 0.675
NPTransfer Lentivirus 0.377
EpitopeTransfer |M. tuberculosis 0.281
BepiPred 3.0 M. tuberculosis 0.856
EpiDope M. tuberculosis 0.928
EpitopeVec M. tuberculosis 0.487
ESM-1b M. tuberculosis 0.192
NPTransfer M. tuberculosis 0.267
BepiPred 3.0 Measles morbilivirus 0.422
EpiDope Measles morbilivirus 0.802
EpitopeVec Measles morbilivirus 0.380
EpitopeTransfer | Measles morbilivirus 1.000
ESM-1b Measles morbilivirus 1.000
NPTransfer Measles morbilivirus 1.000
EpitopeTransfer | Mononegavirales 0.617
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Method Dataset Value
BepiPred 3.0 Mononegavirales 0.576
EpiDope Mononegavirales 0.884
EpitopeVec Mononegavirales 0.592
ESM-1b Mononegavirales 0.529
NPTransfer Mononegavirales 0.215
EpitopeTransfer |Orthopox 0.779
BepiPred 3.0 Orthopox 0.864
EpiDope Orthopox 0.452
EpitopeVec Orthopox 0.471
ESM-1b Orthopox 0.710
NPTransfer Orthopox 0.287
EpitopeTransfer |Ovolvulus 0.924
BepiPred 3.0 Ovolvulus 0.422
EpiDope Ovolvulus 0.920
EpitopeVec Ovolvulus 0.577
ESM-1b Ovolvulus 0.959
NPTransfer Ovolvulus 0.560
EpitopeTransfer |P. aeruginosa 0.030
BepiPred 3.0 P. aeruginosa 0.909
EpiDope P. aeruginosa 1.000
EpitopeVec P. aeruginosa 0.515
ESM-1b P. aeruginosa 0.697
NPTransfer P. aeruginosa 0.939
EpitopeTransfer |P. falciparum 0.624
BepiPred 3.0 P. falciparum 0.851
EpiDope P. falciparum 0.769
EpitopeVec P. falciparum 0.363
ESM-1b P. falciparum 0.549
NPTransfer P. falciparum 0.669
EpitopeTransfer |S. mansoni 0.224
BepiPred 3.0 S. mansoni 0.768
EpiDope S. mansoni 0.851
EpitopeVec S. mansoni 0.662
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Method Dataset Value

ESM-1b S. mansoni 0.783

NPTransfer S. mansoni 0.931

EpitopeTransfer |Sars-cov-2 0.937

BepiPred 3.0 Sars-cov-2 0.836

EpiDope Sars-cov-2 0.894

EpitopeVec Sars-cov-2 0.547

ESM-1b Sars-cov-2 0.912

NPTransfer Sars-cov-2 0.929

EpitopeTransfer |T. gondii 0.253

BepiPred 3.0 T. gondii 0.198

EpiDope T. gondii 0.890

EpitopeVec T. gondii 0.440

ESM-1b T. gondii 0.143

NPTransfer T. gondii 0.396
Metric |EpitopeTrans BepiPred 3.0 EpiDope | EpitopeVec ESM-1b NPTransfer
AUC 0.690 (£0.029) [0.503 (£0.035)]0.634 (£0.032)]0.602 (£0.027)|0.656 (£0.030)|0.642 (£0.032)
F1 0.592 (£0.060) [0.363 (£0.045)]0.276 (£0.029)]0.509 (£0.044)]0.542 (£0.060)|0.529 (£0.061)
MCC 0.258 (40.052) [0.041 (£0.044)]0.118 (£0.025)]0.112 (£0.029)]0.172 (£0.047)|0.177 (£0.049)
B. ACC |0.623 (£0.028) |0.527 (£0.021)|0.548 (£0.011)|0.566 (£0.019)|0.581 (£0.023)|0.585 (£0.025)
PPV 0.549 (£0.056) [0.462 (£0.066)]0.581 (£0.065)]0.496 (£0.055)]0.529 (£0.058)|0.522 (+0.062)
NPV 0.724 (£0.057) [0.555 (£0.057)]0.571 (£0.054)]0.604 (£0.050)|0.638 (£0.060)|0.584 (£0.066)
Sensit. | 0.697 (£0.068) [0.393 (£0.062)|0.226 (£+0.037)|0.610 (£0.037)|0.641 (£0.073)|0.656 (£+0.073)
Specif. | 0.549 (£0.072) [0.660 (£0.061)|0.869 (£0.030)|0.522 (£0.023)|0.521 (£0.083)|0.513 (£0.079)

Table 9: Summary of average test set performance (mean %standard error) for EpitopeTransfer
(proposed method) and five baseline methods across 20 selected datasets. Each row corresponds
to a performance evaluation metric, and the values indicate the mean performance of each
method over all datasets.
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Appendix D

Statistical comparisons of median values for each performance metric were performed to
assess the significance of differences between EpitopeTransfer (ESM-1b) and the baseline
methods. The Wilcoxon signed rank test was used as the primary statistical method
to evaluate whether observed differences in medians were statistically meaningful. To
account for multiple comparisons, the p-values derived from the tests were adjusted for
the false discovery rate using the Benjamini-Hochberg correction.

The analysis includes the following columns: “Pair”, which specifies the pairwise com-
parison (e.g., EpitopeTransfer vs. Baseline); “Medians of diff”, representing the median
of paired differences (95% CI); “p-value”, which indicates the unadjusted significance
level from the Wilcoxon test; “FDR”, which represents the adjusted p-value following the
Benjamini-Hochberg procedure; and “Significant”, which highlights whether the corrected
p-value falls below the significance threshold of 0.05.

Comparison Results for AUC

Metric Pair Medians of diff. p-value FDR Signific
AUC EpitopeTransfer vs BepiPred 3 0.193 (0.088, 0.276) 0.00097 0.00483  Yes
AUC EpitopeTransfer vs EpiDope  0.054 (-0.018, 0.120) 0.12319 0.12319 No
AUC EpitopeTransfer vs EpitopeVec 0.091 (0.014, 0.178) 0.03234 0.04043  Yes
AUC EpitopeTransfer vs ESM-1b 0.028 (0.004, 0.060) 0.02299 0.03831  Yes
AUC EpitopeTransfer vs NPTransfer 0.061 (0.015, 0.083) 0.00392 0.00979  Yes

Table 10: Comparison Results for AUC
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Figure 2: Performance plot for the AUC metric
Comparison Results for Balanced Accuracy
Metric Pair Medians of diff. p-value FDR Signific

BACC  EpitopeTransfer vs BepiPred 3 0.088 (0.035, 0.165) 0.01407 0.03402  Yes
BACC  EpitopeTransfer vs EpiDope  0.073 (0.011, 0.140) 0.02041 0.03402  Yes
BACC  EpitopeTransfer vs EpitopeVec 0.057 (-0.013, 0.140) 0.12319 0.12319  No
BACC  EpitopeTransfer vs esm-1b 0.041 (0.011, 0.074) 0.01597 0.03402  Yes
BACC  EpitopeTransfer vs NPTransfer 0.030 (0.002, 0.087) 0.03285 0.04106  Yes

Table 11: Comparison Results for Balanced Accuracy
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Figure 3: Performance plot for the Balanced Accuracy metric

Comparison Results for F1

Metric  Pair Medians of diff. p-value FDR Signific
F1 EpitopeTransfer vs BepiPred 3 0.247 (0.139, 0.364) 0.00013 0.00031  Yes
F1 EpitopeTransfer vs EpiDope  0.369 (0.236, 0.477) 0.00003 0.00013  Yes
F1 EpitopeTransfer vs EpitopeVec 0.110 (0.041, 0.187) 0.00284 0.00334  Yes
F1 EpitopeTransfer vs esm-1b 0.055 (0.020, 0.087) 0.00334 0.00334  Yes
F1 EpitopeTransfer vs NPTransfer 0.058 (0.021, 0.114) 0.00030 0.00050  Yes

Table 12: Comparison Results for F1
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Figure 4: Performance plot for the F1 metric

Comparison Results for MCC

Metric  Pair Medians of diff. p-value FDR Signific
MCC EpitopeTransfer vs BepiPred 3 0.204 (0.105, 0.390) 0.00823 0.01698  Yes
MCC EpitopeTransfer vs EpiDope  0.134 (0.023, 0.254) 0.02041 0.02041  Yes
MCC EpitopeTransfer vs EpitopeVec 0.150 (0.027, 0.296) 0.02041 0.02041  Yes
MCC EpitopeTransfer vs ESM-1b  0.082 (0.025, 0.143) 0.00618 0.01698  Yes
MCC EpitopeTransfer vs NPTransfer 0.065 (0.019, 0.154) 0.01019 0.01698  Yes

Table 13: Comparison Results for MCC
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Figure 5: Performance plot for the MCC metric

Comparison Results for NPV

Tt

p=1.70e-02

I
NPTransfer

Metric Pair

Medians of diff. p-value FDR Signific

NPV EpitopeTransfer vs BepiPred 3 0.140 (0.027, 0.307) 0.01236 0.01545  Yes

NPV EpitopeTransfer vs EpiDope

0.116 (0.024, 0.315) 0.00533 0.01316  Yes

)

( )
NPV EpitopeTransfer vs EpitopeVec 0.087 (0.010, 0.301) 0.02299 0.02299  Yes
NPV EpitopeTransfer vs esm-1b 0.050 (0.012, 0.158) 0.00789 0.01316  Yes
NPV EpitopeTransfer vs NPTransfer 0.070 (0.020, 0.304) 0.00405 0.01316  Yes

Table 14: Comparison Results for NPV
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Figure 6: Performance plot for the NPV metric

Comparison Results for PPV

Metric Pair Medians of diff. p-value FDR Signific
PPV EpitopeTransfer vs BepiPred 3 0.089 (-0.012, 0.206) 0.09551 0.15919  No
PPV EpitopeTransfer vs EpiDope  0.007 (-0.097, 0.097) 0.89057 0.89057 No
PPV EpitopeTransfer vs EpitopeVec 0.075 (0.009, 0.133) 0.02582 0.12911 No
PPV EpitopeTransfer vs esm-1b 0.014 (-0.014, 0.050) 0.31241 0.39051  No
PPV EpitopeTransfer vs NPTransfer 0.025 (-0.002, 0.090) 0.06111 0.15279  No

Table 15: Comparison Results for PPV
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Figure 7: Performance plot for the PPV metric

Comparison Results for Sensitivity

Metric Pair Medians of diff. p-value FDR Signific
Sensit.  EpitopeTransfer vs BepiPred 3 0.341 (0.167, 0.529) 0.00169 0.00423  Yes
Sensit.  EpitopeTransfer vs EpiDope  0.554 (0.370, 0.686) 0.00004 0.00019  Yes
Sensit.  EpitopeTransfer vs EpitopeVec 0.155 (0.006, 0.272) 0.04937 0.08228 No
Sensit.  EpitopeTransfer vs esm-1b 0.040 (-0.039, 0.155) 0.31651 0.39564  No
Sensit.  EpitopeTransfer vs NPTransfer 0.012 (-0.090, 0.171) 0.51359 0.51359  No

Table 16: Comparison Results for Sensitivity
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Figure 8: Performance plot for the Sensitivity metric

Comparison Results for Specificity

Metric Pair

Medians of diff. p-value FDR Signific

Specif. EpitopeTransfer vs BepiPred 3 -0.152 (-0.377, 0.041) 0.11338 0.28344 No
Specif. EpitopeTransfer vs EpiDope  -0.366 (-0.591, -0.144) 0.00306 0.01531  Yes
Specif.  EpitopeTransfer vs EpitopeVec 0.007 (-0.167, 0.176) 0.95298 0.95298 No
Specif. EpitopeTransfer vs esm-1b 0.047 (-0.039, 0.145) 0.17700 0.29499 No
Specif. EpitopeTransfer vs NPTransfer 0.052 (-0.128, 0.246) 0.50750 0.63438 No

Table 17: Comparison Results for Specificity
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Figure 9: Performance plot for the Specificity metric

Summary of Comparison Results

Metric Pair Medians of diff. p-value FDR Significant
AUC  EpitopeTransfer vs BepiPred 3 0.193 (0.088, 0.276) 0.00097 0.00483 Yes
AUC  EpitopeTransfer vs EpiDope  0.054 (-0.018, 0.120) 0.12319 0.12319 No
AUC  EpitopeTransfer vs EpitopeVec 0.091 (0.014, 0.178) 0.03234 0.04043 Yes
AUC  EpitopeTransfer vs esm-1b 0.028 (0.004, 0.060) 0.02299 0.03831 Yes
AUC  EpitopeTransfer vs NPTransfer 0.061 (0.015, 0.083) 0.00392 0.00979 Yes
BACC EpitopeTransfer vs BepiPred 3 0.088 (0.035, 0.165) 0.01407 0.03402 Yes
BACC EpitopeTransfer vs EpiDope 0.073 (0.011, 0.140) 0.02041 0.03402 Yes
BACC EpitopeTransfer vs EpitopeVec 0.057 (-0.013, 0.140) 0.12319 0.12319 No
BACC EpitopeTransfer vs esm-1b 0.041 (0.011, 0.074) 0.01597 0.03402 Yes
BACC EpitopeTransfer vs NPTransfer 0.030 (0.002, 0.087) 0.03285 0.04106 Yes
F1 EpitopeTransfer vs BepiPred 3 0.247 (0.139, 0.364) 0.00013 0.00031 Yes
F1 EpitopeTransfer vs EpiDope 0.369 (0.236, 0.477) 0.00003 0.00013 Yes
F1 EpitopeTransfer vs EpitopeVec 0.110 (0.041, 0.187) 0.00284 0.00334 Yes
F1 EpitopeTransfer vs esm-1b 0.055 (0.020, 0.087) 0.00334 0.00334 Yes
F1 EpitopeTransfer vs NPTransfer 0.058 (0.021, 0.114) 0.00030 0.00050 Yes
MCC  EpitopeTransfer vs BepiPred 3 0.204 (0.105, 0.390) 0.00823 0.01698 Yes
MCC EpitopeTransfer vs EpiDope 0.134 (0.023, 0.254) 0.02041 0.02041 Yes
MCC EpitopeTransfer vs EpitopeVec 0.150 (0.027, 0.296) 0.02041 0.02041 Yes
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MCC
MCC
NPV
NPV
NPV
NPV
NPV
PPV
PPV
PPV
PPV
PPV

Sensit.
Sensit.
Sensit.
Sensit.
Sensit.
Specif.
Specif.
Specif.
Specif.
Specif.

EpitopeTransfer vs esm-1b 0.082 (0.025, 0.143) 0.00618 0.01698
EpitopeTransfer vs NPTransfer 0.065 (0.019, 0.154) 0.01019 0.01698
EpitopeTransfer vs BepiPred 3 0.140 (0.027, 0.307) 0.01236 0.01545
EpitopeTransfer vs EpiDope 0.116 (0.024, 0.315) 0.00533 0.01316
EpitopeTransfer vs EpitopeVec 0.087 (0.010, 0.301) 0.02299 0.02299
EpitopeTransfer vs esm-1b 0.050 (0.012, 0.158) 0.00789 0.01316
EpitopeTransfer vs NPTransfer 0.070 (0.020, 0.304) 0.00405 0.01316
EpitopeTransfer vs BepiPred 3 0.089 (-0.012, 0.206) 0.09551 0.15919
EpitopeTransfer vs EpiDope  0.007 (-0.097, 0.097) 0.89057 0.89057
EpitopeTransfer vs EpitopeVec 0.075 (0.009, 0.133) 0.02582 0.12911
EpitopeTransfer vs esm-1b 0.014 (-0.014, 0.050) 0.31241 0.39051
EpitopeTransfer vs NPTransfer 0.025 (-0.002, 0.090) 0.06111 0.15279
EpitopeTransfer vs BepiPred 3 0.341 (0.167, 0.529) 0.00169 0.00423
EpitopeTransfer vs EpiDope 0.554 (0.370, 0.686) 0.00004 0.00019
EpitopeTransfer vs EpitopeVec 0.155 (0.006, 0.272) 0.04937 0.08228
EpitopeTransfer vs esm-1b 0.040 (-0.039, 0.155) 0.31651 0.39564
EpitopeTransfer vs NPTransfer 0.012 (-0.090, 0.171) 0.51359 0.51359
EpitopeTransfer vs BepiPred 3 -0.152 (-0.377, 0.041) 0.11338 0.28344
-0.591, -0.144) 0.00306 0.01531
-0.167, 0.176) 0.95298 0.95298
-0.039, 0.145) 0.17700 0.29499
-0.128, 0.246) 0.50750 0.63438

EpitopeTransfer vs EpitopeVec 0.007

(
(
EpitopeTransfer vs EpiDope  -0.366 (
(
EpitopeTransfer vs esm-1b 0.047 (

(

EpitopeTransfer vs NPTransfer 0.052

Table 19: Summary of Comparison Results across All Metrics
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Appendix E

The estimated performance for each method on each dataset is presented below, following
the same evaluation framework described in Appendix E. In this appendix, however, all
experiments were conducted using ESM-2 (650M) as the base model for every method.
Method refers to the employed approach, including the primary method, EpitopeTrans-
fer, which leverages phylogenetic information, and internal and external baselines. The
internal baselines are ESM-2, a pretrained protein language model fine-tuned for epi-
tope prediction, and Non-phylogenetic transfer (NPTransfer), a transfer learning
method that does not utilize phylogenetic relationships. The external baselines include
BepiPred 3.0, EpiDope, and EpitopeVec, which are methods developed outside this
study and are included for comparative evaluation. Dataset corresponds to the data from
20 specific taxa, and Value represents the value of each presented metric. The evaluated
metrics include AUC (Area Under the Curve), F1 score, MCC (Matthews Correlation
Coefficient), Accuracy, PPV (Positive Predictive Value), NPV (Negative Predictive
Value), Sensitivity, and Specificity.

Table 20: Comparison of methods for AUC

Method Dataset Value
EpitopeTransfer |B. pertussis 0.533
BepiPred 3.0 B. pertussis 0.365
EpiDope B. pertussis 0.359
EpitopeVec B. pertussis 0.750
ESM-2 B. pertussis 0.520
NPTransfer B. pertussis 0.371
EpitopeTransfer |C. difficile 0.656
BepiPred 3.0 C. difficile 0.425
EpiDope C. difficile 0.744
EpitopeVec C. difficile 0.851
ESM-2 C. difficile 0.673
NPTransfer C. difficile 0.511
EpitopeTransfer |C. trachomatis 0.834
BepiPred 3.0 C. trachomatis 0.559
EpiDope C. trachomatis 0.665
EpitopeVec C. trachomatis 0.717
ESM-2 C. trachomatis 0.834
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Method Dataset Value
NPTransfer C. trachomatis 0.768
EpitopeTransfer |Corynebacterium 0.632
BepiPred 3.0 Corynebacterium 0.648
EpiDope Corynebacterium 0.733
EpitopeVec Corynebacterium 0.728
ESM-2 Corynebacterium 0.605
NPTransfer Corynebacterium 0.596
EpitopeTransfer |E. coli 0.909
BepiPred 3.0 E. coli 0.400
EpiDope E. coli 0.804
EpitopeVec E. coli 0.533
ESM-2 E. coli 0.855
NPTransfer E. coli 0.810
EpitopeTransfer |Enterobacteriaceae 0.821
BepiPred 3.0 Enterobacteriaceae 0.554
EpiDope Enterobacteriaceae 0.613
EpitopeVec Enterobacteriaceae 0.549
ESM-2 Enterobacteriaceae 0.701
NPTransfer Enterobacteriaceae 0.675
EpitopeTransfer |Filoviridae 0.959
BepiPred 3.0 Filoviridae 0.538
EpiDope Filoviridae 0.877
EpitopeVec Filoviridae 0.752
ESM-2 Filoviridae 0.936
NPTransfer Filoviridae 0.906
EpitopeTransfer | Human gammaherpesvirus 4 0.612
BepiPred 3.0 Human gammaherpesvirus 4 0.398
EpiDope Human gammaherpesvirus 4 0.617
EpitopeVec Human gammaherpesvirus 4 0.560
ESM-2 Human gammaherpesvirus 4 0.616
NPTransfer Human gammaherpesvirus 4 0.612
EpitopeTransfer |Influenza A 0.654
BepiPred 3.0 Influenza A 0.570
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Method Dataset Value
EpiDope Influenza A 0.523
EpitopeVec Influenza A 0.630
ESM-2 Influenza A 0.654
NPTransfer Influenza A 0.653
EpitopeTransfer |Lentivirus 0.666
BepiPred 3.0 Lentivirus 0.581
EpiDope Lentivirus 0.552
EpitopeVec Lentivirus 0.596
ESM-2 Lentivirus 0.640
NPTransfer Lentivirus 0.609
EpitopeTransfer |M. tuberculosis 0.479
BepiPred 3.0 M. tuberculosis 0.444
EpiDope M. tuberculosis 0.481
EpitopeVec M. tuberculosis 0.481
ESM-2 M. tuberculosis 0.489
NPTransfer M. tuberculosis 0.456
EpitopeTransfer | Measles morbilivirus 0.595
BepiPred 3.0 Measles morbilivirus 0.381
EpiDope Measles morbilivirus 0.501
EpitopeVec Measles morbilivirus 0.538
ESM-2 Measles morbilivirus 0.479
NPTransfer Measles morbilivirus 0.372
EpitopeTransfer | Mononegavirales 0.787
BepiPred 3.0 Mononegavirales 0.446
EpiDope Mononegavirales 0.817
EpitopeVec Mononegavirales 0.671
ESM-2 Mononegavirales 0.731
NPTransfer Mononegavirales 0.793
EpitopeTransfer |Orthopox 0.649
BepiPred 3.0 Orthopox 0.728
EpiDope Orthopox 0.688
EpitopeVec Orthopox 0.322
ESM-2 Orthopox 0.613
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Method Dataset Value
NPTransfer Orthopox 0.634
EpitopeTransfer | Ovolvulus 0.606
BepiPred 3.0 Ovolvulus 0.721
EpiDope Ovolvulus 0.495
EpitopeVec Ovolvulus 0.585
ESM-2 Ovolvulus 0.569
NPTransfer Ovolvulus 0.567
EpitopeTransfer |P. aeruginosa 0.720
BepiPred 3.0 P. aeruginosa 0.040
EpiDope P. aeruginosa 0.874
EpitopeVec P. aeruginosa 0.565
ESM-2 P. aeruginosa 0.790
NPTransfer P. aeruginosa 0.712
EpitopeTransfer |P. falciparum 0.794
BepiPred 3.0 P. falciparum 0.675
EpiDope P. falciparum 0.603
EpitopeVec P. falciparum 0.512
ESM-2 P. falciparum 0.685
NPTransfer P. falciparum 0.796
EpitopeTransfer |S. mansoni 0.539
BepiPred 3.0 S. mansoni 0.560
EpiDope S. mansoni 0.672
EpitopeVec S. mansoni 0.447
ESM-2 S. mansoni 0.534
NPTransfer S. mansoni 0.565
EpitopeTransfer |Sars-cov-2 0.625
BepiPred 3.0 Sars-cov-2 0.569
EpiDope Sars-cov-2 0.597
EpitopeVec Sars-cov-2 0.630
ESM-2 Sars-cov-2 0.605
NPTransfer Sars-cov-2 0.605
EpitopeTransfer |T. gondii 0.651
BepiPred 3.0 T. gondii 0.454
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Method Dataset Value
EpiDope T. gondii 0.466
EpitopeVec T. gondii 0.620
ESM-2 T. gondii 0.601
NPTransfer T. gondii 0.582
Table 21: Comparison of methods for F1
Method Dataset Value
EpitopeTransfer |B. pertussis 0.619
BepiPred 3.0 B. pertussis 0.778
EpiDope B. pertussis 0.288
EpitopeVec B. pertussis 0.754
ESM-2 B. pertussis 0.639
NPTransfer B. pertussis 0.688
EpitopeTransfer |C. difficile 0.236
BepiPred 3.0 C. difficile 0.000
EpiDope C. difficile 0.000
EpitopeVec C. difficile 0.282
ESM-2 C. difficile 0.087
NPTransfer C. difficile 0.088
EpitopeTransfer |C. trachomatis 0.774
BepiPred 3.0 C. trachomatis 0.583
EpiDope C. trachomatis 0.311
EpitopeVec C. trachomatis 0.624
ESM-2 C. trachomatis 0.662
NPTransfer C. trachomatis 0.696
EpitopeTransfer |Corynebacterium 0.672
BepiPred 3.0 Corynebacterium 0.303
EpiDope Corynebacterium 0.286
EpitopeVec Corynebacterium 0.672
ESM-2 Corynebacterium 0.639
NPTransfer Corynebacterium 0.623
EpitopeTransfer |E. coli 0.886
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Method Dataset Value
BepiPred 3.0 E. coli 0.375
EpiDope E. coli 0.340
EpitopeVec E. coli 0.628
ESM-2 E. coli 0.855
NPTransfer E. coli 0.855
EpitopeTransfer |Enterobacteriaceae 0.709
BepiPred 3.0 Enterobacteriaceae 0.434
EpiDope Enterobacteriaceae 0.188
EpitopeVec Enterobacteriaceae 0.534
ESM-2 Enterobacteriaceae 0.642
NPTransfer Enterobacteriaceae 0.651
EpitopeTransfer |Filoviridae 0.651
BepiPred 3.0 Filoviridae 0.235
EpiDope Filoviridae 0.316
EpitopeVec Filoviridae 0.271
ESM-2 Filoviridae 0.444
NPTransfer Filoviridae 0.280
EpitopeTransfer |Human gammaherpesvirus 4 0.341
BepiPred 3.0 Human gammaherpesvirus 4 0.273
EpiDope Human gammaherpesvirus 4 0.244
EpitopeVec Human gammaherpesvirus 4 0.508
ESM-2 Human gammaherpesvirus 4 0.421
NPTransfer Human gammaherpesvirus 4 0.305
EpitopeTransfer |Influenza A 0.782
BepiPred 3.0 Influenza A 0.539
EpiDope Influenza A 0.206
EpitopeVec Influenza A 0.798
ESM-2 Influenza A 0.770
NPTransfer Influenza A 0.783
EpitopeTransfer |Lentivirus 0.821
BepiPred 3.0 Lentivirus 0.490
EpiDope Lentivirus 0.457
EpitopeVec Lentivirus 0.571
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Method Dataset Value
ESM-2 Lentivirus 0.796
NPTransfer Lentivirus 0.817
EpitopeTransfer |M. tuberculosis 0.257
BepiPred 3.0 M. tuberculosis 0.254
EpiDope M. tuberculosis 0.155
EpitopeVec M. tuberculosis 0.510
ESM-2 M. tuberculosis 0.653
NPTransfer M. tuberculosis 0.280
EpitopeTransfer | Measles morbilivirus 0.638
BepiPred 3.0 Measles morbilivirus 0.281
EpiDope Measles morbilivirus 0.356
EpitopeVec Measles morbilivirus 0.587
ESM-2 Measles morbilivirus 0.553
NPTransfer Measles morbilivirus 0.521
EpitopeTransfer | Mononegavirales 0.638
BepiPred 3.0 Mononegavirales 0.271
EpiDope Mononegavirales 0.499
EpitopeVec Mononegavirales 0.495
ESM-2 Mononegavirales 0.446
NPTransfer Mononegavirales 0.591
EpitopeTransfer |Orthopox 0.352
BepiPred 3.0 Orthopox 0.492
EpiDope Orthopox 0.351
EpitopeVec Orthopox 0.138
ESM-2 Orthopox 0.295
NPTransfer Orthopox 0.320
EpitopeTransfer |Ovolvulus 0.142
BepiPred 3.0 Ovolvulus 0.364
EpiDope Ovolvulus 0.053
EpitopeVec Ovolvulus 0.262
ESM-2 Ovolvulus 0.227
NPTransfer Ovolvulus 0.215
EpitopeTransfer |P. aeruginosa 0.742
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Method Dataset Value
BepiPred 3.0 P. aeruginosa 0.000
EpiDope P. aeruginosa 0.116
EpitopeVec P. aeruginosa 0.698
ESM-2 P. aeruginosa 0.650
NPTransfer P. aeruginosa 0.667
EpitopeTransfer |P. falciparum 0.805
BepiPred 3.0 P. falciparum 0.372
EpiDope P. falciparum 0.431
EpitopeVec P. falciparum 0.642
ESM-2 P. falciparum 0.736
NPTransfer P. falciparum 0.804
EpitopeTransfer |S. mansoni 0.368
BepiPred 3.0 S. mansoni 0.367
EpiDope S. mansoni 0.370
EpitopeVec S. mansoni 0.296
ESM-2 S. mansoni 0.445
NPTransfer S. mansoni 0.153
EpitopeTransfer |Sars-cov-2 0.141
BepiPred 3.0 Sars-cov-2 0.136
EpiDope Sars-cov-2 0.262
EpitopeVec Sars-cov-2 0.222
ESM-2 Sars-cov-2 0.198
NPTransfer Sars-cov-2 0.148
EpitopeTransfer |T. gondii 0.832
BepiPred 3.0 T. gondii 0.703
EpiDope T. gondii 0.297
EpitopeVec T. gondii 0.682
ESM-2 T. gondii 0.697
NPTransfer T. gondii 0.814
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Table 22: Comparison of methods for MCC

Method Dataset Value
EpitopeTransfer |B. pertussis 0.085
BepiPred 3.0 B. pertussis -0.008
EpiDope B. pertussis -0.108
EpitopeVec B. pertussis 0.351
ESM-2 B. pertussis 0.020
NPTransfer B. pertussis -0.255
EpitopeTransfer |C. difficile 0.137
BepiPred 3.0 C. difficile -0.027
EpiDope C. difficile 0.000
EpitopeVec C. difficile 0.279
ESM-2 C. difficile 0.113
NPTransfer C. difficile -0.017
EpitopeTransfer |C. trachomatis 0.568
BepiPred 3.0 C. trachomatis -0.055
EpiDope C. trachomatis 0.137
EpitopeVec C. trachomatis 0.286
ESM-2 C. trachomatis 0.493
NPTransfer C. trachomatis 0.370
EpitopeTransfer |Corynebacterium 0.282
BepiPred 3.0 Corynebacterium 0.247
EpiDope Corynebacterium 0.309
EpitopeVec Corynebacterium 0.315
ESM-2 Corynebacterium 0.145
NPTransfer Corynebacterium 0.128
EpitopeTransfer |E. coli 0.442
BepiPred 3.0 E. coli -0.136
EpiDope E. coli 0.248
EpitopeVec E. coli 0.031
ESM-2 E. coli 0.000
NPTransfer E. coli 0.000
EpitopeTransfer |Enterobacteriaceae 0.427
BepiPred 3.0 Enterobacteriaceae 0.054
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Method Dataset Value
EpiDope Enterobacteriaceae 0.144
EpitopeVec Enterobacteriaceae 0.061
ESM-2 Enterobacteriaceae 0.310
NPTransfer Enterobacteriaceae 0.200
EpitopeTransfer |Filoviridae 0.610
BepiPred 3.0 Filoviridae 0.143
EpiDope Filoviridae 0.240
EpitopeVec Filoviridae 0.202
ESM-2 Filoviridae 0.388
NPTransfer Filoviridae 0.228
EpitopeTransfer |Human gammaherpesvirus 4 0.275
BepiPred 3.0 Human gammaherpesvirus 4 -0.180
EpiDope Human gammaherpesvirus 4 0.068
EpitopeVec Human gammaherpesvirus 4 0.070
ESM-2 Human gammaherpesvirus 4 0.148
NPTransfer Human gammaherpesvirus 4 0.210
EpitopeTransfer |Influenza A 0.218
BepiPred 3.0 Influenza A 0.239
EpiDope Influenza A 0.054
EpitopeVec Influenza A 0.139
ESM-2 Influenza A 0.171
NPTransfer Influenza A 0.212
EpitopeTransfer |Lentivirus 0.350
BepiPred 3.0 Lentivirus 0.376
EpiDope Lentivirus 0.033
EpitopeVec Lentivirus 0.067
ESM-2 Lentivirus 0.245
NPTransfer Lentivirus 0.303
EpitopeTransfer |M. tuberculosis -0.016
BepiPred 3.0 M. tuberculosis 0.029
EpiDope M. tuberculosis 0.033
EpitopeVec M. tuberculosis -0.008
ESM-2 M. tuberculosis 0.035
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Method Dataset Value
NPTransfer M. tuberculosis -0.071
EpitopeTransfer | Measles morbilivirus 0.068
BepiPred 3.0 Measles morbilivirus -0.310
EpiDope Measles morbilivirus 0.079
EpitopeVec Measles morbilivirus 0.091
ESM-2 Measles morbilivirus -0.160
NPTransfer Measles morbilivirus -0.325
EpitopeTransfer | Mononegavirales 0.428
BepiPred 3.0 Mononegavirales -0.136
EpiDope Mononegavirales 0.336
EpitopeVec Mononegavirales 0.170
ESM-2 Mononegavirales 0.299
NPTransfer Mononegavirales 0.376
EpitopeTransfer |Orthopox 0.168
BepiPred 3.0 Orthopox 0.375
EpiDope Orthopox 0.163
EpitopeVec Orthopox -0.206
ESM-2 Orthopox 0.078
NPTransfer Orthopox 0.124
EpitopeTransfer |Ovolvulus 0.095
BepiPred 3.0 Ovolvulus 0.277
EpiDope Ovolvulus -0.055
EpitopeVec Ovolvulus 0.064
ESM-2 Ovolvulus 0.083
NPTransfer Ovolvulus 0.085
EpitopeTransfer |P. aeruginosa 0.249
BepiPred 3.0 P. aeruginosa -0.258
EpiDope P. aeruginosa 0.137
EpitopeVec P. aeruginosa 0.145
ESM-2 P. aeruginosa 0.407
NPTransfer P. aeruginosa 0.397
EpitopeTransfer |P. falciparum 0.410
BepiPred 3.0 P. falciparum 0.119
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Method Dataset Value
EpiDope P. falciparum 0.088
EpitopeVec P. falciparum 0.018
ESM-2 P. falciparum 0.270
NPTransfer P. falciparum 0.425
EpitopeTransfer |S. mansoni 0.069
BepiPred 3.0 S. mansoni 0.126
EpiDope S. mansoni 0.185
EpitopeVec S. mansoni -0.016
ESM-2 S. mansoni 0.042
NPTransfer S. mansoni 0.036
EpitopeTransfer |Sars-cov-2 0.018
BepiPred 3.0 Sars-cov-2 0.011
EpiDope Sars-cov-2 0.169
EpitopeVec Sars-cov-2 0.101
ESM-2 Sars-cov-2 0.095
NPTransfer Sars-cov-2 0.047
EpitopeTransfer |T. gondii 0.312
BepiPred 3.0 T. gondii -0.070
EpiDope T. gondii 0.092
EpitopeVec T. gondii 0.084
ESM-2 T. gondii 0.166
NPTransfer T. gondii -0.039

Table 23: Comparison of methods for Balanced Accuracy

Method Dataset Value
EpitopeTransfer |B. pertussis 0.547
BepiPred 3.0 B. pertussis 0.497
EpiDope B. pertussis 0.451
EpitopeVec B. pertussis 0.694
ESM-2 B. pertussis 0.511
NPTransfer B. pertussis 0.384
EpitopeTransfer |C. difficile 0.605
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Method Dataset Value
BepiPred 3.0 C. difficile 0.496
EpiDope C. difficile 0.500
EpitopeVec C. difficile 0.737
ESM-2 C. difficile 0.521
NPTransfer C. difficile 0.491
EpitopeTransfer |C. trachomatis 0.783
BepiPred 3.0 C. trachomatis 0.476
EpiDope C. trachomatis 0.549
EpitopeVec C. trachomatis 0.642
ESM-2 C. trachomatis 0.727
NPTransfer C. trachomatis 0.685
EpitopeTransfer |Corynebacterium 0.632
BepiPred 3.0 Corynebacterium 0.576
EpiDope Corynebacterium 0.583
EpitopeVec Corynebacterium 0.655
ESM-2 Corynebacterium 0.559
NPTransfer Corynebacterium 0.556
EpitopeTransfer |E. coli 0.623
BepiPred 3.0 E. coli 0.429
EpiDope E. coli 0.603
EpitopeVec E. coli 0.518
ESM-2 E. coli 0.500
NPTransfer E. coli 0.500
EpitopeTransfer | Enterobacteriaceae 0.713
BepiPred 3.0 Enterobacteriaceae 0.526
EpiDope Enterobacteriaceae 0.536
EpitopeVec Enterobacteriaceae 0.530
ESM-2 Enterobacteriaceae 0.655
NPTransfer Enterobacteriaceae 0.584
EpitopeTransfer |Filoviridae 0.827
BepiPred 3.0 Filoviridae 0.616
EpiDope Filoviridae 0.618
EpitopeVec Filoviridae 0.667
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Method Dataset Value
ESM-2 Filoviridae 0.682
NPTransfer Filoviridae 0.591
EpitopeTransfer |Human gammaherpesvirus 4 0.589
BepiPred 3.0 Human gammaherpesvirus 4 0.415
EpiDope Human gammaherpesvirus 4 0.523
EpitopeVec Human gammaherpesvirus 4 0.535
ESM-2 Human gammaherpesvirus 4 0.565
NPTransfer Human gammaherpesvirus 4 0.568
EpitopeTransfer |Influenza A 0.616
BepiPred 3.0 Influenza A 0.629
EpiDope Influenza A 0.519
EpitopeVec Influenza A 0.566
ESM-2 Influenza A 0.591
NPTransfer Influenza A 0.612
EpitopeTransfer |Lentivirus 0.629
BepiPred 3.0 Lentivirus 0.662
EpiDope Lentivirus 0.516
EpitopeVec Lentivirus 0.535
ESM-2 Lentivirus 0.592
NPTransfer Lentivirus 0.575
EpitopeTransfer |M. tuberculosis 0.494
BepiPred 3.0 M. tuberculosis 0.511
EpiDope M. tuberculosis 0.509
EpitopeVec M. tuberculosis 0.496
ESM-2 M. tuberculosis 0.513
NPTransfer M. tuberculosis 0.470
EpitopeTransfer | Measles morbilivirus 0.516
BepiPred 3.0 Measles morbilivirus 0.346
EpiDope Measles morbilivirus 0.533
EpitopeVec Measles morbilivirus 0.543
ESM-2 Measles morbilivirus 0.440
NPTransfer Measles morbilivirus 0.386
EpitopeTransfer | Mononegavirales 0.721
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Method Dataset Value
BepiPred 3.0 Mononegavirales 0.430
EpiDope Mononegavirales 0.646
EpitopeVec Mononegavirales 0.589
ESM-2 Mononegavirales 0.621
NPTransfer Mononegavirales 0.689
EpitopeTransfer |Orthopox 0.607
BepiPred 3.0 Orthopox 0.699
EpiDope Orthopox 0.605
EpitopeVec Orthopox 0.365
ESM-2 Orthopox 0.550
NPTransfer Orthopox 0.578
EpitopeTransfer |Ovolvulus 0.528
BepiPred 3.0 Ovolvulus 0.687
EpiDope Ovolvulus 0.480
EpitopeVec Ovolvulus 0.545
ESM-2 Ovolvulus 0.543
NPTransfer Ovolvulus 0.541
EpitopeTransfer |P. aeruginosa 0.634
BepiPred 3.0 P. aeruginosa 0.455
EpiDope P. aeruginosa 0.531
EpitopeVec P. aeruginosa 0.579
ESM-2 P. aeruginosa 0.717
NPTransfer P. aeruginosa 0.714
EpitopeTransfer |P. falciparum 0.686
BepiPred 3.0 P. falciparum 0.550
EpiDope P. falciparum 0.541
EpitopeVec P. falciparum 0.509
ESM-2 P. falciparum 0.632
NPTransfer P. falciparum 0.700
EpitopeTransfer |S. mansoni 0.537
BepiPred 3.0 S. mansoni 0.562
EpiDope S. mansoni 0.581
EpitopeVec S. mansoni 0.491
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Method Dataset Value
ESM-2 S. mansoni 0.507
NPTransfer S. mansoni 0.511
EpitopeTransfer |Sars-cov-2 0.511
BepiPred 3.0 Sars-cov-2 0.507
EpiDope Sars-cov-2 0.592
EpitopeVec Sars-cov-2 0.584
ESM-2 Sars-cov-2 0.553
NPTransfer Sars-cov-2 0.524
EpitopeTransfer |T. gondii 0.613
BepiPred 3.0 T. gondii 0.468
EpiDope T. gondii 0.537
EpitopeVec T. gondii 0.544
ESM-2 T. gondii 0.588
NPTransfer T. gondii 0.498
Table 24: Comparison of methods for PPV
Method Dataset Value
EpitopeTransfer |B. pertussis 0.757
BepiPred 3.0 B. pertussis 0.717
EpiDope B. pertussis 0.625
EpitopeVec B. pertussis 0.857
ESM-2 B. pertussis 0.726
NPTransfer B. pertussis 0.658
EpitopeTransfer |C. difficile 0.158
BepiPred 3.0 C. difficile 0.000
EpiDope C. difficile 0.000
EpitopeVec C. difficile 0.164
ESM-2 C. difficile 0.400
NPTransfer C. difficile 0.080
EpitopeTransfer |C. trachomatis 0.817
BepiPred 3.0 C. trachomatis 0.491
EpiDope C. trachomatis 0.667
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Method Dataset Value
EpitopeVec C. trachomatis 0.667
ESM-2 C. trachomatis 0.877
NPTransfer C. trachomatis 0.682
EpitopeTransfer |Corynebacterium 0.571
BepiPred 3.0 Corynebacterium 0.833
EpiDope Corynebacterium 1.000
EpitopeVec Corynebacterium 0.603
ESM-2 Corynebacterium 0.511
NPTransfer Corynebacterium 0.512
EpitopeTransfer |E. coli 0.796
BepiPred 3.0 E. coli 0.656
EpiDope E. coli 1.000
EpitopeVec E. coli 0.759
ESM-2 E. coli 0.746
NPTransfer E. coli 0.746
EpitopeTransfer |Enterobacteriaceae 0.674
BepiPred 3.0 Enterobacteriaceae 0.507
EpiDope Enterobacteriaceae 0.733
EpitopeVec Enterobacteriaceae 0.497
ESM-2 Enterobacteriaceae 0.627
NPTransfer Enterobacteriaceae 0.524
EpitopeTransfer |Filoviridae 0.603
BepiPred 3.0 Filoviridae 0.138
EpiDope Filoviridae 0.321
EpitopeVec Filoviridae 0.164
ESM-2 Filoviridae 0.480
NPTransfer Filoviridae 0.371
EpitopeTransfer | Human gammaherpesvirus 4 0.829
BepiPred 3.0 Human gammaherpesvirus 4 0.326
EpiDope Human gammaherpesvirus 4 0.542
EpitopeVec Human gammaherpesvirus 4 0.491
ESM-2 Human gammaherpesvirus 4 0.579
NPTransfer Human gammaherpesvirus 4 0.740
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Method Dataset Value
EpitopeTransfer |Influenza A 0.812
BepiPred 3.0 Influenza A 0.901
EpiDope Influenza A 0.817
EpitopeVec Influenza A 0.782
ESM-2 Influenza A 0.799
NPTransfer Influenza A 0.810
EpitopeTransfer |Lentivirus 0.725
BepiPred 3.0 Lentivirus 1.000
EpiDope Lentivirus 0.680
EpitopeVec Lentivirus 0.692
ESM-2 Lentivirus 0.707
NPTransfer Lentivirus 0.693
EpitopeTransfer |M. tuberculosis 0.502
BepiPred 3.0 M. tuberculosis 0.553
EpiDope M. tuberculosis 0.574
EpitopeVec M. tuberculosis 0.515
ESM-2 M. tuberculosis 0.526
NPTransfer M. tuberculosis 0.454
EpitopeTransfer | Measles morbilivirus 0.478
BepiPred 3.0 Measles morbilivirus 0.293
EpiDope Measles morbilivirus 0.542
EpitopeVec Measles morbilivirus 0.502
ESM-2 Measles morbilivirus 0.433
NPTransfer Measles morbilivirus 0.403
EpitopeTransfer | Mononegavirales 0.586
BepiPred 3.0 Mononegavirales 0.259
EpiDope Mononegavirales 0.646
EpitopeVec Mononegavirales 0.427
ESM-2 Mononegavirales 0.643
NPTransfer Mononegavirales 0.587
EpitopeTransfer |Orthopox 0.258
BepiPred 3.0 Orthopox 0.456
EpiDope Orthopox 0.228
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Method Dataset Value
EpitopeVec Orthopox 0.094
ESM-2 Orthopox 0.212
NPTransfer Orthopox 0.239
EpitopeTransfer | Ovolvulus 0.306
BepiPred 3.0 Ovolvulus 0.225
EpiDope Ovolvulus 0.080
EpitopeVec Ovolvulus 0.176
ESM-2 Ovolvulus 0.216
NPTransfer Ovolvulus 0.227
EpitopeTransfer |P. aeruginosa 0.800
BepiPred 3.0 P. aeruginosa 0.000
EpiDope P. aeruginosa 1.000
EpitopeVec P. aeruginosa 0.765
ESM-2 P. aeruginosa 0.952
NPTransfer P. aeruginosa 0.933
EpitopeTransfer |P. falciparum 0.743
BepiPred 3.0 P. falciparum 0.736
EpiDope P. falciparum 0.693
EpitopeVec P. falciparum 0.631
ESM-2 P. falciparum 0.720
NPTransfer P. falciparum 0.757
EpitopeTransfer |S. mansoni 0.324
BepiPred 3.0 S. mansoni 0.379
EpiDope S. mansoni 0.454
EpitopeVec S. mansoni 0.274
ESM-2 S. mansoni 0.287
NPTransfer S. mansoni 0.338
EpitopeTransfer |Sars-cov-2 0.115
BepiPred 3.0 Sars-cov-2 0.110
EpiDope Sars-cov-2 0.238
EpitopeVec Sars-cov-2 0.135
ESM-2 Sars-cov-2 0.176
NPTransfer Sars-cov-2 0.142
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Method Dataset Value
EpitopeTransfer |T. gondii 0.745
BepiPred 3.0 T. gondii 0.671
EpiDope T. gondii 0.787
EpitopeVec T. gondii 0.720
ESM-2 T. gondii 0.753
NPTransfer T. gondii 0.688

Table 25: Comparison of methods for NPV

Method Dataset Value
EpitopeTransfer |B. pertussis 0.320
BepiPred 3.0 B. pertussis 0.273
EpiDope B. pertussis 0.256
EpitopeVec B. pertussis 0.462
ESM-2 B. pertussis 0.292
NPTransfer B. pertussis 0.062
EpitopeTransfer |C. difficile 0.931
BepiPred 3.0 C. difficile 0.906
EpiDope C. difficile 0.907
EpitopeVec C. difficile 1.000
ESM-2 C. difficile 0.910
NPTransfer C. difficile 0.905
EpitopeTransfer |C. trachomatis 0.753
BepiPred 3.0 C. trachomatis 0.446
EpiDope C. trachomatis 0.522
EpitopeVec C. trachomatis 0.621
ESM-2 C. trachomatis 0.657
NPTransfer C. trachomatis 0.689
EpitopeTransfer |Corynebacterium 0.730
BepiPred 3.0 Corynebacterium 0.569
EpiDope Corynebacterium 0.571
EpitopeVec Corynebacterium 0.717
ESM-2 Corynebacterium 0.667
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Method Dataset Value
NPTransfer Corynebacterium 0.633
EpitopeTransfer |E. coli 1.000
BepiPred 3.0 E. coli 0.215
EpiDope E. coli 0.299
EpitopeVec E. coli 0.268
ESM-2 E. coli 0.000
NPTransfer E. coli 0.000
EpitopeTransfer |Enterobacteriaceae 0.752
BepiPred 3.0 Enterobacteriaceae 0.550
EpiDope Enterobacteriaceae 0.550
EpitopeVec Enterobacteriaceae 0.563
ESM-2 Enterobacteriaceae 0.683
NPTransfer Enterobacteriaceae 0.714
EpitopeTransfer |Filoviridae 0.966
BepiPred 3.0 Filoviridae 0.949
EpiDope Filoviridae 0.922
EpitopeVec Filoviridae 0.958
ESM-2 Filoviridae 0.935
NPTransfer Filoviridae 0.916
EpitopeTransfer | Human gammaherpesvirus 4 0.595
BepiPred 3.0 Human gammaherpesvirus 4 0.483
EpiDope Human gammaherpesvirus 4 0.559
EpitopeVec Human gammaherpesvirus 4 0.579
ESM-2 Human gammaherpesvirus 4 0.589
NPTransfer Human gammaherpesvirus 4 0.583
EpitopeTransfer |Influenza A 0.393
BepiPred 3.0 Influenza A 0.321
EpiDope Influenza A 0.258
EpitopeVec Influenza A 0.364
ESM-2 Influenza A 0.362
NPTransfer Influenza A 0.391
EpitopeTransfer |Lentivirus 0.750
BepiPred 3.0 Lentivirus 0.435
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Method Dataset Value
EpiDope Lentivirus 0.353
EpitopeVec Lentivirus 0.372
ESM-2 Lentivirus 0.618
NPTransfer Lentivirus 0.923
EpitopeTransfer |M. tuberculosis 0.478
BepiPred 3.0 M. tuberculosis 0.488
EpiDope M. tuberculosis 0.486
EpitopeVec M. tuberculosis 0.477
ESM-2 M. tuberculosis 0.523
NPTransfer M. tuberculosis 0.462
EpitopeTransfer | Measles morbilivirus 0.667
BepiPred 3.0 Measles morbilivirus 0.395
EpiDope Measles morbilivirus 0.552
EpitopeVec Measles morbilivirus 0.593
ESM-2 Measles morbilivirus 0.355
NPTransfer Measles morbilivirus 0.135
EpitopeTransfer | Mononegavirales 0.826
BepiPred 3.0 Mononegavirales 0.608
EpiDope Mononegavirales 0.742
EpitopeVec Mononegavirales 0.734
ESM-2 Mononegavirales 0.725
NPTransfer Mononegavirales 0.788
EpitopeTransfer |Orthopox 0.874
BepiPred 3.0 Orthopox 0.897
EpiDope Orthopox 0.898
EpitopeVec Orthopox 0.749
ESM-2 Orthopox 0.848
NPTransfer Orthopox 0.859
EpitopeTransfer |Ovolvulus 0.857
BepiPred 3.0 Ovolvulus 0.980
EpiDope Ovolvulus 0.845
EpitopeVec Ovolvulus 0.870
ESM-2 Ovolvulus 0.863
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Method Dataset Value
NPTransfer Ovolvulus 0.862
EpitopeTransfer |P. aeruginosa 0.432
BepiPred 3.0 P. aeruginosa 0.270
EpiDope P. aeruginosa 0.303
EpitopeVec P. aeruginosa 0.370
ESM-2 P. aeruginosa 0.431
NPTransfer P. aeruginosa 0.435
EpitopeTransfer |P. falciparum 0.708
BepiPred 3.0 P. falciparum 0.405
EpiDope P. falciparum 0.402
EpitopeVec P. falciparum 0.387
ESM-2 P. falciparum 0.555
NPTransfer P. falciparum 0.694
EpitopeTransfer |S. mansoni 0.740
BepiPred 3.0 S. mansoni 0.750
EpiDope S. mansoni 0.757
EpitopeVec S. mansoni 0.710
ESM-2 S. mansoni 0.838
NPTransfer S. mansoni 0.721
EpitopeTransfer |Sars-cov-2 0.900
BepiPred 3.0 Sars-cov-2 0.899
EpiDope Sars-cov-2 0.917
EpitopeVec Sars-cov-2 0.927
ESM-2 Sars-cov-2 0.909
NPTransfer Sars-cov-2 0.903
EpitopeTransfer |T. gondii 0.684
BepiPred 3.0 T. gondii 0.254
EpiDope T. gondii 0.329
EpitopeVec T. gondii 0.360
ESM-2 T. gondii 0.403
NPTransfer T. gondii 0.000
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Table 26: Comparison of methods for Sensitivity
Method Dataset Value
EpitopeTransfer |B. pertussis 0.523
BepiPred 3.0 B. pertussis 0.850
EpiDope B. pertussis 0.187
EpitopeVec B. pertussis 0.673
ESM-2 B. pertussis 0.570
NPTransfer B. pertussis 0.720
EpitopeTransfer |C. difficile 0.463
BepiPred 3.0 C. difficile 0.000
EpiDope C. difficile 0.000
EpitopeVec C. difficile 1.000
ESM-2 C. difficile 0.049
NPTransfer C. difficile 0.098
EpitopeTransfer |C. trachomatis 0.734
BepiPred 3.0 C. trachomatis 0.719
EpiDope C. trachomatis 0.203
EpitopeVec C. trachomatis 0.586
ESM-2 C. trachomatis 0.531
NPTransfer C. trachomatis 0.711
EpitopeTransfer |Corynebacterium 0.815
BepiPred 3.0 Corynebacterium 0.185
EpiDope Corynebacterium 0.167
EpitopeVec Corynebacterium 0.759
ESM-2 Corynebacterium 0.852
NPTransfer Corynebacterium 0.796
EpitopeTransfer |E. coli 1.000
BepiPred 3.0 E. coli 0.263
EpiDope E. coli 0.205
EpitopeVec E. coli 0.535
ESM-2 E. coli 1.000
NPTransfer E. coli 1.000
EpitopeTransfer |Enterobacteriaceae 0.748
BepiPred 3.0 Enterobacteriaceae 0.380
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Method Dataset Value
EpiDope Enterobacteriaceae 0.108
EpitopeVec Enterobacteriaceae 0.575
ESM-2 Enterobacteriaceae 0.658
NPTransfer Enterobacteriaceae 0.861
EpitopeTransfer |Filoviridae 0.707
BepiPred 3.0 Filoviridae 0.793
EpiDope Filoviridae 0.310
EpitopeVec Filoviridae 0.793
ESM-2 Filoviridae 0.414
NPTransfer Filoviridae 0.224
EpitopeTransfer |Human gammaherpesvirus 4 0.215
BepiPred 3.0 Human gammaherpesvirus 4 0.235
EpiDope Human gammaherpesvirus 4 0.158
EpitopeVec Human gammaherpesvirus 4 0.526
ESM-2 Human gammaherpesvirus 4 0.331
NPTransfer Human gammaherpesvirus 4 0.192
EpitopeTransfer |Influenza A 0.755
BepiPred 3.0 Influenza A 0.384
EpiDope Influenza A 0.118
EpitopeVec Influenza A 0.815
ESM-2 Influenza A 0.743
NPTransfer Influenza A 0.758
EpitopeTransfer |Lentivirus 0.946
BepiPred 3.0 Lentivirus 0.324
EpiDope Lentivirus 0.345
EpitopeVec Lentivirus 0.486
ESM-2 Lentivirus 0.912
NPTransfer Lentivirus 0.993
EpitopeTransfer |M. tuberculosis 0.173
BepiPred 3.0 M. tuberculosis 0.165
EpiDope M. tuberculosis 0.090
EpitopeVec M. tuberculosis 0.505
ESM-2 M. tuberculosis 0.859
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Method Dataset Value
NPTransfer M. tuberculosis 0.202
EpitopeTransfer | Measles morbilivirus 0.959
BepiPred 3.0 Measles morbilivirus 0.271
EpiDope Measles morbilivirus 0.265
EpitopeVec Measles morbilivirus 0.706
ESM-2 Measles morbilivirus 0.765
NPTransfer Measles morbilivirus 0.735
EpitopeTransfer | Mononegavirales 0.699
BepiPred 3.0 Mononegavirales 0.285
EpiDope Mononegavirales 0.407
EpitopeVec Mononegavirales 0.587
ESM-2 Mononegavirales 0.341
NPTransfer Mononegavirales 0.595
EpitopeTransfer |Orthopox 0.552
BepiPred 3.0 Orthopox 0.534
EpiDope Orthopox 0.759
EpitopeVec Orthopox 0.259
ESM-2 Orthopox 0.483
NPTransfer Orthopox 0.483
EpitopeTransfer |Ovolvulus 0.092
BepiPred 3.0 Ovolvulus 0.952
EpiDope Ovolvulus 0.039
EpitopeVec Ovolvulus 0.513
ESM-2 Ovolvulus 0.238
NPTransfer Ovolvulus 0.204
EpitopeTransfer |P. aeruginosa 0.691
BepiPred 3.0 P. aeruginosa 0.000
EpiDope P. aeruginosa 0.062
EpitopeVec P. aeruginosa 0.642
ESM-2 P. aeruginosa 0.494
NPTransfer P. aeruginosa 0.519
EpitopeTransfer |P. falciparum 0.877
BepiPred 3.0 P. falciparum 0.249
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Method Dataset Value
EpiDope P. falciparum 0.313
EpitopeVec P. falciparum 0.654
ESM-2 P. falciparum 0.753
NPTransfer P. falciparum 0.856
EpitopeTransfer |S. mansoni 0.426
BepiPred 3.0 S. mansoni 0.356
EpiDope S. mansoni 0.312
EpitopeVec S. mansoni 0.321
ESM-2 S. mansoni 0.987
NPTransfer S. mansoni 0.099
EpitopeTransfer |Sars-cov-2 0.182
BepiPred 3.0 Sars-cov-2 0.178
EpiDope Sars-cov-2 0.290
EpitopeVec Sars-cov-2 0.620
ESM-2 Sars-cov-2 0.227
NPTransfer Sars-cov-2 0.155
EpitopeTransfer |T. gondii 0.941
BepiPred 3.0 T. gondii 0.738
EpiDope T. gondii 0.183
EpitopeVec T. gondii 0.649
ESM-2 T. gondii 0.649
NPTransfer T. gondii 0.995
Table 27: Comparison of methods for Specificity
Method Dataset Value
EpitopeTransfer |B. pertussis 0.571
BepiPred 3.0 B. pertussis 0.143
EpiDope B. pertussis 0.714
EpitopeVec B. pertussis 0.714
ESM-2 B. pertussis 0.452
NPTransfer B. pertussis 0.048
EpitopeTransfer |C. difficile 0.746
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Method Dataset Value
BepiPred 3.0 C. difficile 0.992
EpiDope C. difficile 1.000
EpitopeVec C. difficile 0.475
ESM-2 C. difficile 0.992
NPTransfer C. difficile 0.884
EpitopeTransfer |C. trachomatis 0.831
BepiPred 3.0 C. trachomatis 0.233
EpiDope C. trachomatis 0.896
EpitopeVec C. trachomatis 0.699
ESM-2 C. trachomatis 0.924
NPTransfer C. trachomatis 0.659
EpitopeTransfer |Corynebacterium 0.450
BepiPred 3.0 Corynebacterium 0.967
EpiDope Corynebacterium 1.000
EpitopeVec Corynebacterium 0.550
ESM-2 Corynebacterium 0.267
NPTransfer Corynebacterium 0.317
EpitopeTransfer |E. coli 0.245
BepiPred 3.0 E. coli 0.594
EpiDope E. coli 1.000
EpitopeVec E. coli 0.500
ESM-2 E. coli 0.000
NPTransfer E. coli 0.000
EpitopeTransfer | Enterobacteriaceae 0.679
BepiPred 3.0 Enterobacteriaceae 0.672
EpiDope Enterobacteriaceae 0.965
EpitopeVec Enterobacteriaceae 0.485
ESM-2 Enterobacteriaceae 0.653
NPTransfer Enterobacteriaceae 0.307
EpitopeTransfer |Filoviridae 0.947
BepiPred 3.0 Filoviridae 0.439
EpiDope Filoviridae 0.926
EpitopeVec Filoviridae 0.541
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Method Dataset Value
ESM-2 Filoviridae 0.949
NPTransfer Filoviridae 0.957
EpitopeTransfer |Human gammaherpesvirus 4 0.963
BepiPred 3.0 Human gammaherpesvirus 4 0.595
EpiDope Human gammaherpesvirus 4 0.889
EpitopeVec Human gammaherpesvirus 4 0.545
ESM-2 Human gammaherpesvirus 4 0.799
NPTransfer Human gammaherpesvirus 4 0.944
EpitopeTransfer |Influenza A 0.476
BepiPred 3.0 Influenza A 0.873
EpiDope Influenza A 0.921
EpitopeVec Influenza A 0.317
ESM-2 Influenza A 0.439
NPTransfer Influenza A 0.466
EpitopeTransfer |Lentivirus 0.312
BepiPred 3.0 Lentivirus 1.000
EpiDope Lentivirus 0.688
EpitopeVec Lentivirus 0.584
ESM-2 Lentivirus 0.273
NPTransfer Lentivirus 0.156
EpitopeTransfer |M. tuberculosis 0.815
BepiPred 3.0 M. tuberculosis 0.856
EpiDope M. tuberculosis 0.928
EpitopeVec M. tuberculosis 0.487
ESM-2 M. tuberculosis 0.166
NPTransfer M. tuberculosis 0.738
EpitopeTransfer | Measles morbilivirus 0.073
BepiPred 3.0 Measles morbilivirus 0.422
EpiDope Measles morbilivirus 0.802
EpitopeVec Measles morbilivirus 0.380
ESM-2 Measles morbilivirus 0.115
NPTransfer Measles morbilivirus 0.036
EpitopeTransfer | Mononegavirales 0.744
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Method Dataset Value
BepiPred 3.0 Mononegavirales 0.576
EpiDope Mononegavirales 0.884
EpitopeVec Mononegavirales 0.592
ESM-2 Mononegavirales 0.902
NPTransfer Mononegavirales 0.783
EpitopeTransfer |Orthopox 0.662
BepiPred 3.0 Orthopox 0.864
EpiDope Orthopox 0.452
EpitopeVec Orthopox 0.471
ESM-2 Orthopox 0.618
NPTransfer Orthopox 0.673
EpitopeTransfer |Ovolvulus 0.963
BepiPred 3.0 Ovolvulus 0.422
EpiDope Ovolvulus 0.920
EpitopeVec Ovolvulus 0.577
ESM-2 Ovolvulus 0.848
NPTransfer Ovolvulus 0.877
EpitopeTransfer |P. aeruginosa 0.576
BepiPred 3.0 P. aeruginosa 0.909
EpiDope P. aeruginosa 1.000
EpitopeVec P. aeruginosa 0.515
ESM-2 P. aeruginosa 0.939
NPTransfer P. aeruginosa 0.909
EpitopeTransfer |P. falciparum 0.495
BepiPred 3.0 P. falciparum 0.851
EpiDope P. falciparum 0.769
EpitopeVec P. falciparum 0.363
ESM-2 P. falciparum 0.512
NPTransfer P. falciparum 0.544
EpitopeTransfer |S. mansoni 0.647
BepiPred 3.0 S. mansoni 0.768
EpiDope S. mansoni 0.851
EpitopeVec S. mansoni 0.662
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Method Dataset Value

ESM-2 S. mansoni 0.027

NPTransfer S. mansoni 0.923

EpitopeTransfer |Sars-cov-2 0.840

BepiPred 3.0 Sars-cov-2 0.836

EpiDope Sars-cov-2 0.894

EpitopeVec Sars-cov-2 0.547

ESM-2 Sars-cov-2 0.879

NPTransfer Sars-cov-2 0.894

EpitopeTransfer |T. gondii 0.286

BepiPred 3.0 T. gondii 0.198

EpiDope T. gondii 0.890

EpitopeVec T. gondii 0.440

ESM-2 T. gondii 0.527

NPTransfer T. gondii 0.000
Metric | EpitopeTrans| BepiPred 3.0| EpiDope EpitopeVec ESM-2 NPTransfer
AUC 0.686 (£0.028) | 0.503 (£0.035) | 0.634 (£0.032) | 0.602 (£0.027) | 0.657 (£0.028) | 0.630 (£0.032)
F1 0.570 (£0.055) | 0.363 (£0.045) | 0.276 (£0.029) | 0.509 (£0.044) | 0.543 (£0.048) | 0.515 (£0.059)
MCC | 0.260 (£0.041) | 0.041 (£0.044) | 0.118 (£0.025) | 0.112 (£0.029) | 0.167 (+0.036) | 0.122 (40.046)
BACC |0.621 (£0.020) | 0.527 (£0.021) | 0.548 (£0.011) | 0.566 (£0.019) | 0.578 (£0.017) | 0.558 (£0.021)
PPV 0.580 (£0.052) | 0.462 (£0.066) | 0.581 (£0.065) | 0.496 (£0.055) | 0.569 (£0.051) | 0.529 (£0.054)
NPV 0.718 (£0.043) | 0.555 (£0.057) [ 0.571 (£0.054) | 0.604 (£0.050) | 0.608 (£0.055) | 0.584 (£0.071)
Sensit. | 0.625 (£0.064) | 0.393 (£0.062) | 0.226 (£0.037) | 0.610 (£0.037) | 0.593 (£0.061) | 0.560 (0.073)
Specif. | 0.616 (£0.057) | 0.660 (£0.061) | 0.869 (£0.030) | 0.522 (£0.023) | 0.564 (£0.075) | 0.556 (£0.080)

Table 28: Summary of average test set performance (mean *standard error) for Epitope-
Transfer (proposed method) and five baseline methods across 20 selected datasets. Each row
corresponds to a performance evaluation metric, and the values indicate the mean performance
of each method over all datasets.
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Appendix F

The statistical comparisons for each method on each method is presented below, follow-
ing the same evaluation framework described in Appendix F. Statistical comparisons of
median values for each performance metric were performed to assess the significance of
differences between EpitopeTransfer (ESM-2) and the baseline methods. The Wilcoxon
signed rank test was used as the primary statistical method to evaluate whether observed
differences in medians were statistically meaningful. To account for multiple comparisons,
the p-values derived from the tests were adjusted for the false discovery rate using the
Benjamini-Hochberg correction.

The analysis includes the following columns: “Pair”, which specifies the pairwise com-
parison (e.g., EpitopeTransfer vs. Baseline); “Medians of diff”, representing the median
of paired differences (95% CI); “p-value”, which indicates the unadjusted significance
level from the Wilcoxon test; “FDR”, which represents the adjusted p-value following the
Benjamini-Hochberg procedure; and “Significant”, which highlights whether the corrected
p-value falls below the significance threshold of 0.05.

Comparison Results for AUC

Metric Pair Medians of diff. p-value FDR Signif.
AUC  EpitopeTransfer vs BepiPred 3 0.166 (0.083, 0.270)  0.00032 0.00081 Yes
AUC  EpitopeTransfer vs EpiDope  0.052 (-0.003, 0.112)  0.07585 0.07585 No
AUC  EpitopeTransfer vs EpitopeVec 0.076 (0.021, 0.162)  0.01923 0.02404 Yes
AUC  EpitopeTransfer vs ESM-2 0.025 (0.009, 0.053)  0.00639 0.01065 Yes
AUC  EpitopeTransfer vs NPTransfer 0.047 (0.019, 0.084)  0.00032 0.00081 Yes

Table 29: Comparison Results for AUC
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Figure 10: Performance plot for the AUC metric

Comparison Results for Balanced Accuracy

Metric Pair Medians of diff. p-value FDR Signif.

BACC EpitopeTransfer vs BepiPred 3 0.091 (0.028, 0.162) 0.00639 0.00799  Yes
BACC EpitopeTransfer vs EpiDope  0.074 (0.032, 0.109) 0.00085 0.00213  Yes
BACC EpitopeTransfer vs EpitopeVec 0.055 (0.009, 0.108) 0.03999 0.03999  Yes
BACC EpitopeTransfer vs ESM-2 0.044 (0.020, 0.066) 0.00271 0.00452 Yes
BACC EpitopeTransfer vs NPTransfer 0.060 (0.024, 0.098) 0.00085 0.00213  Yes

Table 30: Comparison Results for Balanced Accuracy
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Figure 11: Performance plot for the Balanced Accuracy metric
Comparison Results for F1
Metric  Pair Medians of diff. p-value FDR Signif.
F1 EpitopeTransfer vs BepiPred 3 0.210 (0.096, 0.331) 0.00102 0.00254 Yes
F1 EpitopeTransfer vs EpiDope  0.306 (0.187, 0.413) 0.00005 0.00024 Yes
F1 EpitopeTransfer vs EpitopeVec 0.064 (-0.015, 0.149) 0.12309 0.12309 No
F1 EpitopeTransfer vs ESM-2 0.043 (-0.011, 0.087) 0.11399 0.12309 No
F1 EpitopeTransfer vs NPTransfer 0.039 (0.009, 0.083) 0.01069 0.01781 Yes

Table 31: Comparison Results for F1
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Figure 12: Performance plot for the F1 metric

Comparison Results for MCC

Metric Pair Medians of diff. p-value FDR Signif.
MCC EpitopeTransfer vs BepiPred 3 0.219 (0.082, 0.371) 0.00730 0.00730 Yes
MCC EpitopeTransfer vs EpiDope  0.148 (0.063, 0.219) 0.00199 0.00496 Yes
MCC EpitopeTransfer vs EpitopeVec 0.155 (0.048, 0.247) 0.00730 0.00730  Yes
MCC EpitopeTransfer vs ESM-2 0.087 (0.035, 0.134) 0.00365 0.00609 Yes
MCC EpitopeTransfer vs NPTransfer 0.123 (0.042, 0.214) 0.00048 0.00241  Yes

Table 32: Comparison Results for MCC
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Figure 13: Performance plot for the MCC metric
Comparison Results for NPV
Metric Pair Medians of diff. p-value FDR Signif.
NPV EpitopeTransfer vs BepiPred 3 0.146 (0.060, 0.234) 0.00071 0.00177  Yes
NPV EpitopeTransfer vs EpiDope  0.117 (0.053, 0.209) 0.00017 0.00084  Yes
NPV EpitopeTransfer vs EpitopeVec 0.073 (0.015, 0.177) 0.00730 0.00730 Yes
NPV EpitopeTransfer vs ESM-2 0.059 (0.016, 0.141) 0.00365 0.00457  Yes
NPV EpitopeTransfer vs NPTransfer 0.038 (0.014, 0.265) 0.00169 0.00282  Yes

Table 33: Comparison Results for NPV
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Figure 14: Performance plot for the NPV metric

Comparison Results for PPV

Metric Pair Medians of diff. p-value FDR Signif.
PPV EpitopeTransfer vs BepiPred 3 0.096 (-0.020, 0.236) 0.08969 0.14949 No
PPV EpitopeTransfer vs EpiDope  -0.005 (-0.079, 0.083) 0.98544 0.98544 No
PPV EpitopeTransfer vs EpitopeVec 0.072 (0.014, 0.140) 0.00315 0.01055 Yes
PPV EpitopeTransfer vs ESM-2 0.019 (-0.021, 0.048) 0.43043 0.53804 No
PPV EpitopeTransfer vs NPTransfer 0.049 (0.019, 0.079) 0.00422 0.01055 Yes

Table 34: Comparison Results for PPV
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Figure 15: Performance plot for the PPV metric

Comparison Results for Sensitivity
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Metric  Pair Medians of diff. p-value FDR Signif.
Sensit. EpitopeTransfer vs BepiPred 3 0.271 (0.022, 0.416) 0.01531 0.03828 Yes
Sensit. EpitopeTransfer vs EpiDope  0.405 (0.258, 0.583) 0.00008 0.00041 Yes
Sensit. EpitopeTransfer vs EpitopeVec 0.024 (-0.131, 0.174) 0.78413 0.78413 No
Sensit. EpitopeTransfer vs ESM-2 0.074 (-0.073, 0.181) 0.26844 0.33555 No
Sensit. EpitopeTransfer vs NPTransfer 0.037 (-0.018, 0.162) 0.23517 0.33555 No

Table 35: Comparison Results for Sensitivity

169




Sensitivity

1.0 - - '] -h .o
< . N
* * - -
0.8 - . . ., . o
- - - -
:: - : . P
0" L
0.6 - :'o - .
-
o. : .." :' 2
0.4 - £ . . »
. o . : :
- o . - *
-
‘,o = - .
0.2 1 S - L1 p=7.84e0 o
* . -
-
0.0 - . . . p=3 ;Ee 0 p=336e-01
p = 3.83e-02 p=4.10e-04 B
_0.2 - I I 1 I 1 I
EpitopeTransfer BepiPred 3 EpiDope EpitopeVvec ESM-2 MNPTransfer

Figure 16: Performance plot for the Sensitivity metric

Comparison Results for Specificity

Metric Pair Medians of diff. p-value FDR Signif.
Specif.  EpitopeTransfer vs BepiPred 3 -0.057 (-0.255, 0.128) 0.70118 0.70118 No
Specif.  EpitopeTransfer vs EpiDope  -0.247 (-0.377, -0.113) 0.00048 0.00241 Yes
Specif.  EpitopeTransfer vs EpitopeVec 0.097 (-0.015, 0.223) 0.09731 0.24327 No
Specif.  EpitopeTransfer vs ESM-2 0.034 (-0.063, 0.139) 0.49801 0.62251 No
Specif.  EpitopeTransfer vs NPTransfer 0.053 (-0.026, 0.152) 0.21617 0.36028 No

Table 36: Comparison Results for Specificity
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Figure 17: Performance plot for the Specificity metric

Summary of Comparison Results
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Metric Pair

Medians of diff.

p-value FDR Signif.

AUC
AUC
AUC
AUC
AUC
BACC
BACC
BACC
BACC
BACC
F1

F1

F1

F1

F1
MCC
MCC
MCC

EpitopeTransfer vs BepiPred 3
EpitopeTransfer vs EpiDope
EpitopeTransfer vs EpitopeVec
EpitopeTransfer vs ESM-2
EpitopeTransfer vs NP Transfer
EpitopeTransfer vs BepiPred 3
EpitopeTransfer vs EpiDope
EpitopeTransfer vs EpitopeVec
EpitopeTransfer vs ESM-2
EpitopeTransfer vs NPTransfer
EpitopeTransfer vs BepiPred 3
EpitopeTransfer vs EpiDope
EpitopeTransfer vs EpitopeVec
EpitopeTransfer vs ESM-2
EpitopeTransfer vs NPTransfer
EpitopeTransfer vs BepiPred 3
EpitopeTransfer vs EpiDope
EpitopeTransfer vs EpitopeVec

0.166 (0.083, 0.270)
0.052 (-0.003, 0.112)
0.076 (0.021, 0.162)
0.025 (0.009, 0.053)
0.047 (0.019, 0.084)
0.091 (0.028, 0.162)
0.074 (0.032, 0.109)
0.055 (0.009, 0.108)
0.044 (0.020, 0.066)
0.060 (0.024, 0.098)
0.210 (0.096, 0.331)
0.306 (0.187, 0.413)
0.064 (-0.015, 0.149)
0.043 (-0.011, 0.087)
0.039 (0.009, 0.083)
0.219 (0.082, 0.371)
0.148 (0.063, 0.219)
0.155 (0.048, 0.247)
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0.00032 0.00081
0.07585 0.07585
0.01923 0.02404
0.00639 0.01065
0.00032 0.00081
0.00639 0.00799
0.00085 0.00213
0.03999 0.03999
0.00271 0.00452
0.00085 0.00213
0.00102 0.00254
0.00005 0.00024
0.12309 0.12309
0.11399 0.12309
0.01069 0.01781
0.00730 0.00730
0.00199 0.00496
0.00730 0.00730

Yes
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
No
Yes
Yes
Yes
Yes




MCC
MCC
NPV
NPV
NPV
NPV
NPV
PPV
PPV
PPV
PPV
PPV

Sensit.
Sensit.
Sensit.
Sensit.
Sensit.
Specif.
Specif.
Specif.
Specif.
Specif.

EpitopeTransfer vs ESM-2 0.087 (0.035, 0.134)
EpitopeTransfer vs NPTransfer 0.123 (0.042, 0.214)
EpitopeTransfer vs BepiPred 3 0.146 (0.060, 0.234)
EpitopeTransfer vs EpiDope 0.117 (0.053, 0.209)
EpitopeTransfer vs EpitopeVec 0.073 (0.015, 0.177)
EpitopeTransfer vs ESM-2 0.059 (0.016, 0.141)
EpitopeTransfer vs NPTransfer 0.038 (0.014, 0.265)
EpitopeTransfer vs BepiPred 3 0.096 (-0.020, 0.236)
20.005 (-0.079, 0.083)
EpitopeTransfer vs EpitopeVec 0.072 (0.014, 0.140)
EpitopeTransfer vs ESM-2 0.019 (-0.021, 0.048)
EpitopeTransfer vs NPTransfer 0.049 (0.019, 0.079)
EpitopeTransfer vs BepiPred 3 0.271 (0.022, 0.416)

0.405 (0.258, 0.583)
EpitopeTransfer vs EpitopeVec 0.024 (-0.131, 0.174)
EpitopeTransfer vs ESM-2 0.074 (-0.073, 0.181)
EpitopeTransfer vs NPTransfer 0.037 (-0.018, 0.162)
EpitopeTransfer vs BepiPred 3 -0.057 (-0.255, 0.128)

-0.247

EpitopeTransfer vs EpiDope
EpitopeTransfer vs EpiDope

EpitopeTransfer vs EpiDope (-

EpitopeTransfer vs EpitopeVec 0.097 (-0.015, 0.223)
EpitopeTransfer vs ESM-2 0.034 (-0.063, 0.139)
EpitopeTransfer vs NPTransfer 0.053 (-0.026, 0.152)

0.00365 0.00609
0.00048 0.00241
0.00071 0.00177
0.00017 0.00084
0.00730 0.00730
0.00365 0.00457
0.00169 0.00282
0.08969 0.14949
0.98544 0.98544
0.00315 0.01055
0.43043 0.53804
0.00422 0.01055
0.01531 0.03828
0.00008 0.00041
0.78413 0.78413
0.26844 0.33555
0.23517 0.33555
0.70118 0.70118

0.377, -0.113) 0.00048 0.00241

0.09731 0.24327
0.49801 0.62251
0.21617 0.36028

Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
No
Yes

Yes
Yes
Yes
No
No
No

Yes
No
No
No

Table 38: Summary of Comparison Results across All Metrics
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Appendix G

The estimated performance for each method on each dataset is presented. Method refers
to the employed approach, including the primary method, EpitopeTransfer, its general-
ized variant, and the baseline. Dataset corresponds to the data from 17 specific taxa, and
Value represents the value of each presented metric. The evaluated metrics include AUC
(Area Under the Curve), F1 score, MCC (Matthews Correlation Coefficient), Accuracy,
PPV (Positive Predictive Value), NPV (Negative Predictive Value), Sensitivity, and
Specificity.

Table 39: Comparison of methods for AUC

Method Dataset Value
EpitopeTransfer |C. difficile 0.590
Baseline C. difficile 0.519
EpitopeTransfer |C. trachomatis 0.779
Baseline C. trachomatis 0.680
EpitopeTransfer |Corynebacterium 0.514
Baseline Corynebacterium 0.637
EpitopeTransfer |Enterobacteriaceae 0.713
Baseline Enterobacteriaceae 0.536
EpitopeTransfer |Firoviridae 0.940
Baseline Firoviridae 0.889
EpitopeTransfer |Human gammaherpesvirus 4 0.640
Baseline Human gammaherpesvirus 4 0.677
EpitopeTransfer |Influenza A 0.694
Baseline Influenza A 0.717
EpitopeTransfer |Lentivirus 0.767
Baseline Lentivirus 0.635
EpitopeTransfer | Measles morbilivirus 0.589
Baseline Measles morbilivirus 0.406
EpitopeTransfer | Mononegavirales 0.780
Baseline Mononegavirales 0.764
EpitopeTransfer |Orthopoxvirus 0.689
Baseline Orthopoxvirus 0.493
EpitopeTransfer |Ovolvulus 0.674
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Method Dataset Value
Baseline Ovolvulus 0.583
EpitopeTransfer |P. aeruginosa 0.637
Baseline P. aeruginosa 0.376
EpitopeTransfer |P. falciparum 0.815
Baseline P. falciparum 0.777
EpitopeTransfer |S. mansoni 0.547
Baseline S. mansoni 0.615
EpitopeTransfer |Sars-cov-2 0.658
Baseline Sars-cov-2 0.575
EpitopeTransfer |T. gondii 0.845
Baseline T. gondii 0.747
Table 40: Comparison of methods for F1
Method Dataset Value
EpitopeTransfer |C. difficile 0.157
Baseline C. difficile 0.000
EpitopeTransfer |C. trachomatis 0.722
Baseline C. trachomatis 0.619
EpitopeTransfer |Corynebacterium 0.659
Baseline Corynebacterium 0.036
EpitopeTransfer |Enterobacteriaceae 0.655
Baseline Enterobacteriaceae 0.479
EpitopeTransfer |Firoviridae 0.592
Baseline Firoviridae 0.431
EpitopeTransfer |Human gammaherpesvirus 4 0.356
Baseline Human gammaherpesvirus 4 0.319
EpitopeTransfer |Influenza A 0.601
Baseline Influenza A 0.547
EpitopeTransfer |Lentivirus 0.667
Baseline Lentivirus 0.752
EpitopeTransfer | Measles morbilivirus 0.526
Baseline Measles morbilivirus 0.424
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Method Dataset Value
EpitopeTransfer | Mononegavirales 0.675
Baseline Mononegavirales 0.563
EpitopeTransfer |Orthopoxvirus 0.650
Baseline Orthopoxvirus 0.548
EpitopeTransfer |Ovolvulus 0.324
Baseline Ovolvulus 0.261
EpitopeTransfer |P. aeruginosa 0.825
Baseline P. aeruginosa 0.787
EpitopeTransfer |P. falciparum 0.707
Baseline P. falciparum 0.562
EpitopeTransfer |S. mansoni 0.158
Baseline S. mansoni 0.448
EpitopeTransfer |Sars-cov-2 0.252
Baseline Sars-cov-2 0.202
EpitopeTransfer |T. gondii 0.816
Baseline T. gondii 0.738
Table 41: Comparison of methods for MCC
Method Dataset Value
EpitopeTransfer |C. difficile 0.063
Baseline C. difficile -0.038
EpitopeTransfer |C. trachomatis 0.469
Baseline C. trachomatis 0.240
EpitopeTransfer |Corynebacterium 0.181
Baseline Corynebacterium 0.099
EpitopeTransfer |Enterobacteriaceae 0.235
Baseline Enterobacteriaceae 0.156
EpitopeTransfer |Firoviridae 0.595
Baseline Firoviridae 0.368
EpitopeTransfer |Human gammaherpesvirus 4 0.200
Baseline Human gammaherpesvirus 4 0.178
EpitopeTransfer |Influenza A 0.384
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Method Dataset Value
Baseline Influenza A 0.317
EpitopeTransfer |Lentivirus 0.256
Baseline Lentivirus 0.227
EpitopeTransfer | Measles morbilivirus 0.100
Baseline Measles morbilivirus -0.105
EpitopeTransfer | Mononegavirales 0.483
Baseline Mononegavirales 0.339
EpitopeTransfer |Orthopoxvirus 0.372
Baseline Orthopoxvirus 0.056
EpitopeTransfer |Ovolvulus 0.167
Baseline Ovolvulus 0.043
EpitopeTransfer |P. aeruginosa -0.060
Baseline P. aeruginosa -0.163
EpitopeTransfer |P. falciparum 0.422
Baseline P. falciparum 0.343
EpitopeTransfer |S. mansoni -0.003
Baseline S. mansoni 0.157
EpitopeTransfer |Sars-cov-2 0.143
Baseline Sars-cov-2 0.077
EpitopeTransfer |T. gondii 0.217
Baseline T. gondii 0.326

Table 42: Comparison of methods for Balanced Accuracy

Method Dataset Value
EpitopeTransfer |C. difficile 0.534
Baseline C. difficile 0.492
EpitopeTransfer |C. trachomatis 0.733
Baseline C. trachomatis 0.620
EpitopeTransfer |Corynebacterium 0.533
Baseline Corynebacterium 0.509
EpitopeTransfer |Enterobacteriaceae 0.607
Baseline Enterobacteriaceae 0.574
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Method Dataset Value
EpitopeTransfer |Firoviridae 0.922
Baseline Firoviridae 0.739
EpitopeTransfer |Human gammaherpesvirus 4 0.574
Baseline Human gammaherpesvirus 4 0.562
EpitopeTransfer |Influenza A 0.708
Baseline Influenza A 0.668
EpitopeTransfer |Lentivirus 0.635
Baseline Lentivirus 0.609
EpitopeTransfer | Measles morbilivirus 0.547
Baseline Measles morbilivirus 0.448
EpitopeTransfer | Mononegavirales 0.751
Baseline Mononegavirales 0.669
EpitopeTransfer |Orthopoxvirus 0.657
Baseline Orthopoxvirus 0.522
EpitopeTransfer |Ovolvulus 0.615
Baseline Ovolvulus 0.529
EpitopeTransfer |P. aeruginosa 0.494
Baseline P. aeruginosa 0.457
EpitopeTransfer |P. falciparum 0.716
Baseline P. falciparum 0.661
EpitopeTransfer |S. mansoni 0.499
Baseline S. mansoni 0.587
EpitopeTransfer |Sars-cov-2 0.607
Baseline Sars-cov-2 0.555
EpitopeTransfer |T. gondii 0.575
Baseline T. gondii 0.675
Table 43: Comparison of methods for PPV
Method Dataset Value
EpitopeTransfer |C. difficile 0.146
Baseline C. difficile 0.000
EpitopeTransfer |C. trachomatis 0.764
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Method Dataset Value
Baseline C. trachomatis 0.629
EpitopeTransfer |Corynebacterium 0.491
Baseline Corynebacterium 1.000
EpitopeTransfer |Enterobacteriaceae 0.546
Baseline Enterobacteriaceae 0.581
EpitopeTransfer |Firoviridae 0.420
Baseline Firoviridae 0.330
EpitopeTransfer |Human gammaherpesvirus 4 0.683
Baseline Human gammaherpesvirus 4 0.673
EpitopeTransfer |Influenza A 0.988
Baseline Influenza A 0.960
EpitopeTransfer |Lentivirus 0.782
Baseline Lentivirus 0.728
EpitopeTransfer | Measles morbilivirus 0.402
Baseline Measles morbilivirus 0.333
EpitopeTransfer | Mononegavirales 0.534
Baseline Mononegavirales 0.567
EpitopeTransfer |Orthopoxvirus 0.487
Baseline Orthopoxvirus 0.405
EpitopeTransfer |Ovolvulus 0.222
Baseline Ovolvulus 0.162
EpitopeTransfer |P. aeruginosa 0.708
Baseline P. aeruginosa 0.692
EpitopeTransfer |P. falciparum 0.854
Baseline P. falciparum 0.883
EpitopeTransfer |S. mansoni 0.281
Baseline S. mansoni 0.360
EpitopeTransfer |Sars-cov-2 0.171
Baseline Sars-cov-2 0.143
EpitopeTransfer |T. gondii 0.726
Baseline T. gondii 0.823
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Table 44: Comparison of methods for NPV

Method Dataset Value
EpitopeTransfer |C. difficile 0.913
Baseline C. difficile 0.905
EpitopeTransfer |C. trachomatis 0.707
Baseline C. trachomatis 0.611
EpitopeTransfer |Corynebacterium 1.000
Baseline Corynebacterium 0.531
EpitopeTransfer |Enterobacteriaceae 0.711
Baseline Enterobacteriaceae 0.585
EpitopeTransfer |Firoviridae 1.000
Baseline Firoviridae 0.952
EpitopeTransfer |Human gammaherpesvirus 4 0.589
Baseline Human gammaherpesvirus 4 0.581
EpitopeTransfer |Influenza A 0.366
Baseline Influenza A 0.340
EpitopeTransfer |Lentivirus 0.461
Baseline Lentivirus 0.507
EpitopeTransfer | Measles morbilivirus 0.703
Baseline Measles morbilivirus 0.561
EpitopeTransfer | Mononegavirales 0.931
Baseline Mononegavirales 0.773
EpitopeTransfer |Orthopoxvirus 0.955
Baseline Orthopoxvirus 0.667
EpitopeTransfer |Ovolvulus 0.899
Baseline Ovolvulus 0.870
EpitopeTransfer |P. aeruginosa 0.000
Baseline P. aeruginosa 0.000
EpitopeTransfer |P. falciparum 0.557
Baseline P. falciparum 0.482
EpitopeTransfer |S. mansoni 0.715
Baseline S. mansoni 0.782
EpitopeTransfer |Sars-cov-2 0.925
Baseline Sars-cov-2 0.911
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Method Dataset Value
EpitopeTransfer |T. gondii 0.588
Baseline T. gondii 0.481
Table 45: Comparison of methods for Sensitivity
Method Dataset Value
EpitopeTransfer |C. difficile 0.171
Baseline C. difficile 0.000
EpitopeTransfer |C. trachomatis 0.684
Baseline C. trachomatis 0.609
EpitopeTransfer |Corynebacterium 1.000
Baseline Corynebacterium 0.019
EpitopeTransfer |Enterobacteriaceae 0.818
Baseline Enterobacteriaceae 0.407
EpitopeTransfer |Firoviridae 1.000
Baseline Firoviridae 0.621
EpitopeTransfer | Human gammaherpesvirus 4 0.241
Baseline Human gammaherpesvirus 4 0.209
EpitopeTransfer |Influenza A 0.432
Baseline Influenza A 0.383
EpitopeTransfer |Lentivirus 0.581
Baseline Lentivirus 0.777
EpitopeTransfer | Measles morbilivirus 0.761
Baseline Measles morbilivirus 0.584
EpitopeTransfer | Mononegavirales 0.916
Baseline Mononegavirales 0.559
EpitopeTransfer |Orthopoxvirus 0.975
Baseline Orthopoxvirus 0.850
EpitopeTransfer |Ovolvulus 0.599
Baseline Ovolvulus 0.678
EpitopeTransfer |P. aeruginosa 0.988
Baseline P. aeruginosa 0.914
EpitopeTransfer |P. falciparum 0.604
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Method Dataset Value
Baseline P. falciparum 0.412
EpitopeTransfer |S. mansoni 0.110
Baseline S. mansoni 0.593
EpitopeTransfer |Sars-cov-2 0.481
Baseline Sars-cov-2 0.345
EpitopeTransfer |T. gondii 0.931
Baseline T. gondii 0.668
Table 46: Comparison of methods for Specificity
Method Dataset Value
EpitopeTransfer |C. difficile 0.897
Baseline C. difficile 0.985
EpitopeTransfer |C. trachomatis 0.783
Baseline C. trachomatis 0.631
EpitopeTransfer |Corynebacterium 0.067
Baseline Corynebacterium 1.000
EpitopeTransfer |Enterobacteriaceae 0.397
Baseline Enterobacteriaceae 0.740
EpitopeTransfer |Firoviridae 0.844
Baseline Firoviridae 0.857
EpitopeTransfer |Human gammaherpesvirus 4 0.907
Baseline Human gammaherpesvirus 4 0.915
EpitopeTransfer |Influenza A 0.984
Baseline Influenza A 0.952
EpitopeTransfer |Lentivirus 0.688
Baseline Lentivirus 0.442
EpitopeTransfer | Measles morbilivirus 0.333
Baseline Measles morbilivirus 0.312
EpitopeTransfer | Mononegavirales 0.586
Baseline Mononegavirales 0.778
EpitopeTransfer |Orthopoxvirus 0.339
Baseline Orthopoxvirus 0.194
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Method Dataset Value
EpitopeTransfer |Ovolvulus 0.630
Baseline Ovolvulus 0.380
EpitopeTransfer |P. aeruginosa 0.000
Baseline P. aeruginosa 0.000
EpitopeTransfer |P. falciparum 0.829
Baseline P. falciparum 0.909
EpitopeTransfer |S. mansoni 0.888
Baseline S. mansoni 0.580
EpitopeTransfer |Sars-cov-2 0.734
Baseline Sars-cov-2 0.764
EpitopeTransfer |T. gondii 0.220
Baseline T. gondii 0.681
Metric EpitopeTransfer Baseline
AUC 0.698 (40.027) 0.625 (£+0.033)
F1 0.549 (£0.053) 0.454 (£0.056)
MCC 0.249 (40.044) 0.154 (£0.039)
Balanced Accuracy 0.630 (£0.027) 0.581 (£0.020)
PPV 0.541 (40.060) 0.545 (£0.072)
NPV 0.707 (£0.065) 0.620 (£0.058)
Sensitivity 0.664 (+0.072) 0.508 (£0.063)
Specificity 0.596 (40.076) 0.654 (£0.072)

Table 47: Summary of average test set performance (mean Zstandard error) for Epitope-
Transfer (proposed method) and the baseline method across 17 selected datasets. Each row
corresponds to a performance evaluation metric, and the values indicate the mean performance
of each method over all datasets.
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Appendix H

Statistical comparisons of median values for each performance metric were performed to
assess the significance of differences between EpitopeTransfer, its generalized variant, and
the baseline method. The Wilcoxon signed rank test was used as the primary statistical
method to evaluate whether observed differences in medians were statistically meaningful.
The analysis includes the following columns: “Pair”, which specifies the pairwise compar-
ison (e.g., EpitopeTransfer vs. Baseline); “Medians of Diff.,” representing the median of
paired differences (95% CI); “p-value”, which indicates the unadjusted significance level
from the Wilcoxon test; and “Significant”, which highlights whether the corrected p-value
falls below the significance threshold of 0.05.

Comparison Results for AUC

Metric  Pair Medians of Diff. p-value FDR

Signif.

AUC EpitopeTransfer vs Baseline 0.075 (0.017, 0.132)  0.00934  0.00934

Yes

Table 48: Comparison Results for AUC

AUC
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Figure 18: Performance plot for the AUC metric
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Comparison Results for Balanced Accuracy

Metric  Pair Medians of Diff. p-value

FDR

Signif.

B. ACC  EpitopeTransfer vs Baseline 0.049 (0.024, 0.084)  0.01500

0.01500

Yes

Table 49: Comparison Results for Balanced Accuracy
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Figure 19: Performance plot for the Balanced Accuracy metric
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Comparison Results for F1

Metric  Pair Medians of Diff. p-value

FDR

Signif.

F1 EpitopeTransfer vs Baseline 0.091 (0.044, 0.131)  0.00934

0.00934

Yes

Table 50: Comparison Results for F1

F1
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Figure 20: Performance plot for the F1 metric
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Comparison Results for MCC

Metric  Pair Medians of Diff. p-value FDR

Signif.

MCC EpitopeTransfer vs Baseline 0.091 (0.048, 0.154)  0.00934  0.00934

Yes

Table 51: Comparison Results for MCC

MCC
1.0 -

0.8 -
0.6 -

0.4 -

0.2 -

0.0 -

—0.2 -
p=934e-03
—0.4 -

—0.6 - | !
EpitopeTransfer Baseline

Figure 21: Performance plot for the MCC metric
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Comparison Results for NPV

Metric  Pair Medians of Diff. p-value FDR

Signif.

NPV EpitopeTransfer vs Baseline 0.075 (0.020, 0.148)  0.00567  0.00567

Yes

Table 52: Comparison Results for NPV

NPV
12 -

1.0 -

0.8 -

0.6 -

0.4 -

0.2 -

0.0 -

p=567e-03

I 1
EpitopeTransfer Baseline

Figure 22: Performance plot for the NPV metric
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Comparison Results for PPV

Metric  Pair Medians of Diff. p-value

Signif.

PPV EpitopeTransfer vs Baseline 0.020 (-0.032, 0.059)  0.45857

No

Table 53: Comparison Results for PPV

PPV
1.2 -

1.0 -
0.8 -

0.6 -

" - .. /
0.0 - S——

p =459 e-01

-0.2 - | !
EpitopeTransfer Baseline

Figure 23: Performance plot for the PPV metric
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Comparison Results for Sensitivity

Metric  Pair Medians of Diff. p-value FDR Signif.

Sensit. EpitopeTransfer vs Baseline 0.147 (0.032, 0.267)  0.03479  0.03479 Yes

Table 54: Comparison Results for Sensitivity

Sensitivity

1.0 - gt
0.8 - .
0.6 - -
0.4 -
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Figure 24: Performance plot for the Sensitivity metric

189




Comparison Results for Specificity

Metric  Pair Medians of Diff. p-value FDR

Signif.

Specif. EpitopeTransfer vs Baseline -0.021 (-0.212, 0.110)  0.73679  0.73679

Table 55: Comparison Results for Specificity

Specificity
12 -

1.0 - LI
. * / . .
-
0.8 - - . : .
0.6 - .. & = /
0.4 - . 5
- - ./
0.2 - =
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EpitopeTransfer Baseline

Figure 25: Performance plot for the Specificity metric
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Summary of Comparison Results

Metric  Pair Medians of Diff. p-value FDR Signif.
AUC EpitopeTransfer vs Baseline 0.075 (0.017, 0.132) 0.00934  0.00934 Yes
B. ACC  EpitopeTransfer vs Baseline 0.049 (0.024, 0.084) 0.01500  0.01500 Yes
F1 EpitopeTransfer vs Baseline 0.091 (0.044, 0.131) 0.00934  0.00934 Yes
MCC EpitopeTransfer vs Baseline 0.091 (0.048, 0.154) 0.00934  0.00934 Yes
NPV EpitopeTransfer vs Baseline 0.075 (0.020, 0.148) 0.00567  0.00567 Yes
PPV EpitopeTransfer vs Baseline 0.020 (-0.032, 0.059) 0.45857  0.45857 No
Sensit. EpitopeTransfer vs Baseline 0.147 (0.032, 0.267) 0.03479  0.03479 Yes
Specif. EpitopeTransfer vs Baseline -0.021 (-0.212, 0.110) 0.73679  0.73679 No

Table 56: Summary of Comparison Results across All Metrics
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Appendix I

The estimated performance of EpitopeTransfer (ESM-1b) and EpitopeTransfer
(ESM-2) is presented below for each dataset. The Method column refers to the employed
approach. The Dataset column corresponds to data from 20 specific taxa, and Value
represents the value for each metric presented. The evaluated metrics include AUC
(Area Under the Curve), F1 score, MCC (Matthews Correlation Coefficient), Accuracy,
PPV (Positive Predictive Value), NPV (Negative Predictive Value), Sensitivity, and
Specificity.

Table 57: Comparison of methods for AUC

Method Dataset Value
EpitopeTransferESM2 B. pertussis 0.533
EpitopeTransferESM1b B. pertussis 0.555
EpitopeTransferESM2 C. difficile 0.656
EpitopeTransferESM1b C. difficile 0.707
EpitopeTransferESM2 C. trachomatis 0.834
EpitopeTransferESM1b C. trachomatis 0.773
EpitopeTransferESM2 Corynebacterium 0.632
EpitopeTransferESM1b Corynebacterium 0.590
EpitopeTransferESM2 E. coli 0.909
EpitopeTransferESM1b E. coli 0.853
EpitopeTransferESM2 Enterobacteriaceae 0.821
EpitopeTransferESM1b Enterobacteriaceae 0.826
EpitopeTransferESM2 Filoviridae 0.959
EpitopeTransferESM1b Filoviridae 0.972
EpitopeTransferESM2 Lentivirus 0.666
EpitopeTransferESM1b Lentivirus 0.789
EpitopeTransferESM2 M. tuberculosis 0.479
EpitopeTransferESM1b M. tuberculosis 0.478
EpitopeTransferESM2 Mononegavirales 0.787
EpitopeTransferESM1b Mononegavirales 0.725
EpitopeTransferESM2 Orthopoxvirus 0.649
EpitopeTransferESM1b Orthopoxvirus 0.689
EpitopeTransferESM2 Ovolvulus 0.606
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Method Dataset Value
EpitopeTransferESM1b Ovolvulus 0.626
EpitopeTransferESM2 P. aeruginosa 0.720
EpitopeTransferESM1b P. aeruginosa 0.721
EpitopeTransferESM2 P. falciparum 0.794
EpitopeTransferESM1b P. falciparum 0.810
EpitopeTransferESM2 S. mansoni 0.539
EpitopeTransferESM1b S. mansoni 0.557
EpitopeTransferESM2 T. gondii 0.651
EpitopeTransferESM1b T. gondii 0.705
EpitopeTransferESM2 Human Gammaherpesvirus 4 0.612
EpitopeTransferESM1b Human Gammaherpesvirus 4 0.593
EpitopeTransferESM2 Influenza A 0.654
EpitopeTransferESM1b Influenza A 0.756
EpitopeTransferESM2 Measles Morbilivirus 0.595
EpitopeTransferESM1b Measles Morbilivirus 0.522
EpitopeTransferESM2 Sars-Cov-2 0.625
EpitopeTransferESM1b Sars-Cov-2 0.547
Table 58: Comparison of methods for F1
Method Dataset Value
EpitopeTransferESM2 B. pertussis 0.619
EpitopeTransferESM1b B. pertussis 0.836
EpitopeTransferESM2 C. difficile 0.236
EpitopeTransferESM1b C. difficile 0.236
EpitopeTransferESM2 C. trachomatis 0.774
EpitopeTransferESM1b C. trachomatis 0.717
EpitopeTransferESM2 Corynebacterium 0.672
EpitopeTransferESM1b Corynebacterium 0.557
EpitopeTransferESM2 E. coli 0.886
EpitopeTransferESM1b E. coli 0.872
EpitopeTransferESM2 Enterobacteriaceae 0.709
EpitopeTransferESM1b Enterobacteriaceae 0.738
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Method Dataset Value
EpitopeTransferESM2 Filoviridae 0.651
EpitopeTransferESM1b Filoviridae 0.780
EpitopeTransferESM2 Lentivirus 0.821
EpitopeTransferESM1b Lentivirus 0.925
EpitopeTransferESM2 M. tuberculosis 0.257
EpitopeTransferESM1b M. tuberculosis 0.586
EpitopeTransferESM2 Mononegavirales 0.638
EpitopeTransferESM1b Mononegavirales 0.565
EpitopeTransferESM2 Orthopoxvirus 0.352
EpitopeTransferESM1b Orthopoxvirus 0.384
EpitopeTransferESM2 Ovolvulus 0.142
EpitopeTransferESM1b Ovolvulus 0.362
EpitopeTransferESM2 P. aeruginosa 0.742
EpitopeTransferESM1b P. aeruginosa 0.835
EpitopeTransferESM2 P. falciparum 0.805
EpitopeTransferESM1b P. falciparum 0.826
EpitopeTransferESM2 S. mansoni 0.368
EpitopeTransferESM1b S. mansoni 0.437
EpitopeTransferESM2 T. gondii 0.832
EpitopeTransferESM1b T. gondii 0.811
EpitopeTransferESM2 Human Gammaherpesvirus 4 0.341
EpitopeTransferESM1b Human Gammaherpesvirus 4 0.444
EpitopeTransferESM2 Influenza A 0.782
EpitopeTransferESM1b Influenza A 0.818
EpitopeTransferESM2 Measles Morbilivirus 0.638
EpitopeTransferESM1b Measles Morbilivirus 0.592
EpitopeTransferESM2 Sars-Cov-2 0.000
EpitopeTransferESM1b Sars-Cov-2 0.120
Table 59: Comparison of methods for MCC
Method Dataset Value
EpitopeTransferESM2 B. pertussis 0.085
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Method Dataset Value
EpitopeTransferESM1b B. pertussis 0.000
EpitopeTransferESM2 C. difficile 0.137
EpitopeTransferESM1b C. difficile 0.173
EpitopeTransferESM2 C. trachomatis 0.568
EpitopeTransferESM1b C. trachomatis 0.447
EpitopeTransferESM2 Corynebacterium 0.282
EpitopeTransferESM1b Corynebacterium 0.064
EpitopeTransferESM2 E. coli 0.442
EpitopeTransferESM1b E. coli 0.325
EpitopeTransferESM2 Enterobacteriaceae 0.427
EpitopeTransferESM1b Enterobacteriaceae 0.479
EpitopeTransferESM2 Filoviridae 0.610
EpitopeTransferESM1b Filoviridae 0.766
EpitopeTransferESM2 Lentivirus 0.350
EpitopeTransferESM1b Lentivirus 0.770
EpitopeTransferESM2 M. tuberculosis -0.016
EpitopeTransferESM1b M. tuberculosis -0.031
EpitopeTransferESM2 Mononegavirales 0.428
EpitopeTransferESM1b Mononegavirales 0.286
EpitopeTransferESM2 Orthopoxvirus 0.168
EpitopeTransferESM1b Orthopoxvirus 0.226
EpitopeTransferESM2 Ovolvulus 0.095
EpitopeTransferESM1b Ovolvulus 0.272
EpitopeTransferESM2 P. aeruginosa 0.249
EpitopeTransferESM1b P. aeruginosa 0.147
EpitopeTransferESM2 P. falciparum 0.410
EpitopeTransferESM1b P. falciparum 0.505
EpitopeTransferESM2 S. mansoni 0.069
EpitopeTransferESM1b S. mansoni 0.056
EpitopeTransferESM2 T. gondii 0.312
EpitopeTransferESM1b T. gondii 0.218
EpitopeTransferESM2 Human Gammaherpesvirus 4 0.275
EpitopeTransferESM1b Human Gammaherpesvirus 4 0.241
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Method Dataset Value
EpitopeTransferESM2 Influenza A 0.218
EpitopeTransferESM1b Influenza A 0.176
EpitopeTransferESM2 Measles Morbilivirus 0.068
EpitopeTransferESM1b Measles Morbilivirus -0.136
EpitopeTransferESM2 Sars-Cov-2 0.000
EpitopeTransferESM1b Sars-Cov-2 0.043

Table 60: Comparison of methods for Balanced Accuracy

Method Dataset Value
EpitopeTransferESM2 B. pertussis 0.547
EpitopeTransferESM1b B. pertussis 0.500
EpitopeTransferESM2 C. difficile 0.605
EpitopeTransferESM1b C. difficile 0.647
EpitopeTransferESM2 C. trachomatis 0.783
EpitopeTransferESM1b C. trachomatis 0.723
EpitopeTransferESM2 Corynebacterium 0.632
EpitopeTransferESM1b Corynebacterium 0.531
EpitopeTransferESM2 E. coli 0.623
EpitopeTransferESM1b E. coli 0.574
EpitopeTransferESM2 Enterobacteriaceae 0.713
EpitopeTransferESM1b Enterobacteriaceae 0.739
EpitopeTransferESM2 Filoviridae 0.827
EpitopeTransferESM1b Filoviridae 0.947
EpitopeTransferESM2 Lentivirus 0.629
EpitopeTransferESM1b Lentivirus 0.844
EpitopeTransferESM2 M. tuberculosis 0.494
EpitopeTransferESM1b M. tuberculosis 0.486
EpitopeTransferESM2 Mononegavirales 0.721
EpitopeTransferESM1b Mononegavirales 0.651
EpitopeTransferESM2 Orthopoxvirus 0.607
EpitopeTransferESM1b Orthopoxvirus 0.631
EpitopeTransferESM2 Ovolvulus 0.528
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Method Dataset Value
EpitopeTransferESM1b Ovolvulus 0.620
EpitopeTransferESM2 P. aeruginosa 0.634
EpitopeTransferESM1b P. aeruginosa 0.515
EpitopeTransferESM2 P. falciparum 0.686
EpitopeTransferESM1b P. falciparum 0.743
EpitopeTransferESM2 S. mansoni 0.537
EpitopeTransferESM1b S. mansoni 0.525
EpitopeTransferESM2 T. gondii 0.613
EpitopeTransferESM1b T. gondii 0.582
EpitopeTransferESM2 Human Gammaherpesvirus 4 0.589
EpitopeTransferESM1b Human Gammaherpesvirus 4 0.600
EpitopeTransferESM2 Influenza A 0.616
EpitopeTransferESM1b Influenza A 0.579
EpitopeTransferESM2 Measles Morbilivirus 0.516
EpitopeTransferESM1b Measles Morbilivirus 0.461
EpitopeTransferESM2 Sars-Cov-2 0.500
EpitopeTransferESM1b Sars-Cov-2 0.518
Table 61: Comparison of methods for PPV
Method Dataset Value
EpitopeTransferESM2 B. pertussis 0.757
EpitopeTransferESM1b B. pertussis 0.718
EpitopeTransferESM2 C. difficile 0.158
EpitopeTransferESM1b C. difficile 0.138
EpitopeTransferESM2 C. trachomatis 0.817
EpitopeTransferESM1b C. trachomatis 0.744
EpitopeTransferESM2 Corynebacterium 0.571
EpitopeTransferESM1b Corynebacterium 0.500
EpitopeTransferESM2 E. coli 0.796
EpitopeTransferESM1b E. coli 0.776
EpitopeTransferESM2 Enterobacteriaceae 0.674
EpitopeTransferESM1b Enterobacteriaceae 0.691
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Method Dataset Value
EpitopeTransferESM2 Filoviridae 0.603
EpitopeTransferESM1b Filoviridae 0.663
EpitopeTransferESM2 Lentivirus 0.725
EpitopeTransferESM1b Lentivirus 0.860
EpitopeTransferESM2 M. tuberculosis 0.502
EpitopeTransferESM1b M. tuberculosis 0.509
EpitopeTransferESM2 Mononegavirales 0.586
EpitopeTransferESM1b Mononegavirales 0.481
EpitopeTransferESM2 Orthopoxvirus 0.258
EpitopeTransferESM1b Orthopoxvirus 0.318
EpitopeTransferESM2 Ovolvulus 0.306
EpitopeTransferESM1b Ovolvulus 0.423
EpitopeTransferESM2 P. aeruginosa 0.800
EpitopeTransferESM1b P. aeruginosa 0.717
EpitopeTransferESM2 P. falciparum 0.743
EpitopeTransferESM1b P. falciparum 0.793
EpitopeTransferESM2 S. mansoni 0.324
EpitopeTransferESM1b S. mansoni 0.297
EpitopeTransferESM2 T. gondii 0.745
EpitopeTransferESM1b T. gondii 0.730
EpitopeTransferESM2 Human Gammaherpesvirus 4 0.829
EpitopeTransferESM1b Human Gammaherpesvirus 4 0.680
EpitopeTransferESM2 Influenza A 0.812
EpitopeTransferESM1b Influenza A 0.787
EpitopeTransferESM2 Measles Morbilivirus 0.478
EpitopeTransferESM1b Measles Morbilivirus 0.448
EpitopeTransferESM2 Sars-Cov-2 0.000
EpitopeTransferESM1b Sars-Cov-2 0.151
Table 62: Comparison of methods for NPV
Method Dataset Value
EpitopeTransferESM2 B. pertussis 0.320
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Method Dataset Value
EpitopeTransferESM1b B. pertussis 0.000
EpitopeTransferESM2 C. difficile 0.931
EpitopeTransferESM1b C. difficile 0.964
EpitopeTransferESM2 C. trachomatis 0.753
EpitopeTransferESM1b C. trachomatis 0.704
EpitopeTransferESM2 Corynebacterium 0.730
EpitopeTransferESM1b Corynebacterium 0.565
EpitopeTransferESM2 E. coli 1.000
EpitopeTransferESM1b E. coli 0.941
EpitopeTransferESM2 Enterobacteriaceae 0.752
EpitopeTransferESM1b Enterobacteriaceae 0.789
EpitopeTransferESM2 Filoviridae 0.966
EpitopeTransferESM1b Filoviridae 0.994
EpitopeTransferESM2 Lentivirus 0.750
EpitopeTransferESM1b Lentivirus 1.000
EpitopeTransferESM2 M. tuberculosis 0.478
EpitopeTransferESM1b M. tuberculosis 0.458
EpitopeTransferESM2 Mononegavirales 0.826
EpitopeTransferESM1b Mononegavirales 0.790
EpitopeTransferESM2 Orthopoxvirus 0.874
EpitopeTransferESM1b Orthopoxvirus 0.876
EpitopeTransferESM2 Ovolvulus 0.857
EpitopeTransferESM1b Ovolvulus 0.885
EpitopeTransferESM2 P. aeruginosa 0.432
EpitopeTransferESM1b P. aeruginosa 1.000
EpitopeTransferESM2 P. falciparum 0.708
EpitopeTransferESM1b P. falciparum 0.732
EpitopeTransferESM2 S. mansoni 0.740
EpitopeTransferESM1b S. mansoni 0.765
EpitopeTransferESM2 T. gondii 0.684
EpitopeTransferESM1b T. gondii 0.561
EpitopeTransferESM2 Human Gammaherpesvirus 4 0.595
EpitopeTransferESM1b Human Gammaherpesvirus 4 0.609
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Method Dataset Value
EpitopeTransferESM2 Influenza A 0.393
EpitopeTransferESM1b Influenza A 0.408
EpitopeTransferESM2 Measles Morbilivirus 0.667
EpitopeTransferESM1b Measles Morbilivirus 0.312
EpitopeTransferESM2 Sars-Cov-2 0.898
EpitopeTransferESM1b Sars-Cov-2 0.901
Table 63: Comparison of methods for Sensitivity
Method Dataset Value
EpitopeTransferESM2 B. pertussis 0.523
EpitopeTransferESM1b B. pertussis 1.000
EpitopeTransferESM2 C. difficile 0.463
EpitopeTransferESM1b C. difficile 0.829
EpitopeTransferESM2 C. trachomatis 0.734
EpitopeTransferESM1b C. trachomatis 0.691
EpitopeTransferESM2 Corynebacterium 0.815
EpitopeTransferESM1b Corynebacterium 0.630
EpitopeTransferESM2 E. coli 1.000
EpitopeTransferESM1b E. coli 0.997
EpitopeTransferESM2 Enterobacteriaceae 0.748
EpitopeTransferESM1b Enterobacteriaceae 0.793
EpitopeTransferESM2 Filoviridae 0.707
EpitopeTransferESM1b Filoviridae 0.948
EpitopeTransferESM2 Lentivirus 0.946
EpitopeTransferESM1b Lentivirus 1.000
EpitopeTransferESM2 M. tuberculosis 0.173
EpitopeTransferESM1b M. tuberculosis 0.691
EpitopeTransferESM2 Mononegavirales 0.699
EpitopeTransferESM1b Mononegavirales 0.685
EpitopeTransferESM2 Orthopoxvirus 0.552
EpitopeTransferESM1b Orthopoxvirus 0.483
EpitopeTransferESM2 Ovolvulus 0.092
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Method Dataset Value
EpitopeTransferESM1b Ovolvulus 0.317
EpitopeTransferESM2 P. aeruginosa 0.691
EpitopeTransferESM1b P. aeruginosa 1.000
EpitopeTransferESM2 P. falciparum 0.877
EpitopeTransferESM1b P. falciparum 0.863
EpitopeTransferESM2 S. mansoni 0.426
EpitopeTransferESM1b S. mansoni 0.826
EpitopeTransferESM2 T. gondii 0.941
EpitopeTransferESM1b T. gondii 0.911
EpitopeTransferESM2 Human Gammaherpesvirus 4 0.215
EpitopeTransferESM1b Human Gammaherpesvirus 4 0.330
EpitopeTransferESM2 Influenza A 0.755
EpitopeTransferESM1b Influenza A 0.852
EpitopeTransferESM2 Measles Morbilivirus 0.959
EpitopeTransferESM1b Measles Morbilivirus 0.871
EpitopeTransferESM2 Sars-Cov-2 0.000
EpitopeTransferESM1b Sars-Cov-2 0.099
Table 64: Comparison of methods for Specificity
Method Dataset Value
EpitopeTransferESM2 B. pertussis 0.571
EpitopeTransferESM1b B. pertussis 0.000
EpitopeTransferESM2 C. difficile 0.746
EpitopeTransferESM1b C. difficile 0.465
EpitopeTransferESM2 C. trachomatis 0.831
EpitopeTransferESM1b C. trachomatis 0.755
EpitopeTransferESM2 Corynebacterium 0.450
EpitopeTransferESM1b Corynebacterium 0.433
EpitopeTransferESM2 E. coli 0.245
EpitopeTransferESM1b E. coli 0.151
EpitopeTransferESM2 Enterobacteriaceae 0.679
EpitopeTransferESM1b Enterobacteriaceae 0.686
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Method Dataset Value
EpitopeTransferESM2 Filoviridae 0.947
EpitopeTransferESM1b Filoviridae 0.945
EpitopeTransferESM2 Lentivirus 0.312
EpitopeTransferESM1b Lentivirus 0.688
EpitopeTransferESM2 M. tuberculosis 0.815
EpitopeTransferESM1b M. tuberculosis 0.281
EpitopeTransferESM2 Mononegavirales 0.744
EpitopeTransferESM1b Mononegavirales 0.617
EpitopeTransferESM2 Orthopoxvirus 0.662
EpitopeTransferESM1b Orthopoxvirus 0.779
EpitopeTransferESM2 Ovolvulus 0.963
EpitopeTransferESM1b Ovolvulus 0.924
EpitopeTransferESM2 P. aeruginosa 0.576
EpitopeTransferESM1b P. aeruginosa 0.030
EpitopeTransferESM2 P. falciparum 0.495
EpitopeTransferESM1b P. falciparum 0.624
EpitopeTransferESM2 S. mansoni 0.647
EpitopeTransferESM1b S. mansoni 0.224
EpitopeTransferESM2 T. gondii 0.286
EpitopeTransferESM1b T. gondii 0.253
EpitopeTransferESM2 Human Gammaherpesvirus 4 0.963
EpitopeTransferESM1b Human Gammaherpesvirus 4 0.871
EpitopeTransferESM2 Influenza A 0.476
EpitopeTransferESM1b Influenza A 0.307
EpitopeTransferESM2 Measles Morbilivirus 0.073
EpitopeTransferESM1b Measles Morbilivirus 0.052
EpitopeTransferESM2 Sars-Cov-2 1.000
EpitopeTransferESM1b Sars-Cov-2 0.937

Table 65: Average performance of methods across all datasets (mean =SEM)

Metric EpitopeTransferESM2 EpitopeTransferESM1b

AUC

0.686 (£0.028) 0.690 (£0.029)
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Metric EpitopeTransferESM2 EpitopeTransferESM1b
F1 0.563 (£0.059) 0.622 (£0.052)
MCC 0.259 (£0.041) 0.251 (£0.055)
Balanced Accuracy 0.620 (£0.020) 0.621 (£0.028)
PPV 0.574 (£0.055) 0.571 (£0.049)
NPV 0.718 (£0.043) 0.713 (£0.060)
Sensitivity 0.616 (£0.068) 0.741 (£0.057)
Specificity 0.624 (£0.059) 0.501 (£0.072)
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Appendix J

Statistical comparisons of median values for each performance metric were performed
to assess the significance of differences between EpitopeTransferESM2 and Epitope-
TransferESM1b (ET denotes EpitopeTransfer in the tables presented below). The
Wilcoxon signed rank test was used as the primary statistical method to evaluate whether
observed differences in medians were statistically meaningful.

The analysis includes the following columns: “Pair”, which specifies the pairwise compar-
ison (e.g., EpitopeTransfer vs. Baseline); “Medians of Diff.,” representing the median of
paired differences (95% CI); “p-value”, which indicates the unadjusted significance level
from the Wilcoxon test; and “Significant”, which highlights whether the corrected p-value
falls below the significance threshold of 0.05.

Comparison Results for AUC

Metric  Pair Medians of diff. p-value  Signif.

AUC ET ESM2 vs ET_ESM1b  -0.003 (-0.029, 0.024)  0.86949 No

Table 66: Comparison Results for AUC

AUC
1.0 -

0.8 -

0.6 -

0.4 - p = 8.69e-01

0.2 -

0.0 -

I 1
EpitopeTransfer ESM-2 EpitopeTransfer ESM-1b

Figure 26: Performance plot for the AUC metric
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Comparison Results for Balanced Accuracy

Metric  Pair Medians of diff. p-value  Signif.

BACC ET _ESM2 vs ET_ESM1b  0.007 (-0.033, 0.039)  0.70118 No

Table 67: Comparison Results for Balanced Accuracy

Balanced Accuracy
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-
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EpitopeTransfer_ESM-2 EpitopeTransfer_ESM-1b

Figure 27: Performance plot for the Balanced Accuracy metric
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Comparison Results for F1

Metric  Pair Medians of diff. p-value  Signif.

F1 ET ESM2vs ET ESM1b -0.051 (-0.107, -0.004)  0.03277 Yes

Table 68: Comparison Results for F1

F1
1.0 -

0.8 -
0.6 -

0.4 -

0.2 -

p = 3.28e-02

0.0 -

-0.2 - | !
EpitopeTransfer_ESM-2 EpitopeTransfer_ESM-1b

Figure 28: Performance plot for the F1 metric
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Comparison Results for MCC

Metric  Pair Medians of diff. p-value

Signif.

MCC ET ESM2 vs ET_ESM1b  0.023 (-0.046, 0.080)  0.57060

Table 69: Comparison Results for MCC

MCC
1.0 -

0.8 - -
0.6 -
0.4 -

0.2 -

0.0 -
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Figure 29: Performance plot for the MCC metric
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Comparison Results for NPV

Metric  Pair Medians of diff. p-value

Signif.

NPV ET _ESM2 vs ET_ESM1b  0.006 (-0.026, 0.069)  0.84082

No

Table 70: Comparison Results for NPV

NPV
12 -

1.0 -

0.8 -

0.6 -

0.4 -

0.2 -

0.0 -
p=841e-01
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EpitopeTransfer_ESM-2 EpitopeTransfer_ESM-1b

Figure 30: Performance plot for the NPV metric
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Comparison Results for PPV

Metric  Pair Medians of diff. p-value  Signif.
PPV ET_ESM2 vs ET_ESM1b  0.008 (-0.034, 0.044) 0.64766 No
Table 71: Comparison Results for PPV
PPV
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Figure 31: Performance plot for the PPV metric
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Comparison Results for Sensitivity

Metric  Pair Medians of diff. p-value

Signif.

Sensit. ET ESM2vs ET ESM1b -0.109 (-0.224, -0.014)  0.02395

Yes

Table 72: Comparison Results for Sensitivity

Sensitivity
1.0 - g
-
-
- s *
0.8 - o0
LT
0.6 - \ =
0.4 -
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0.2 -
-
0.0 - p=240e-02
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EpitopeTransfer_ESM-2 EpitopeTransfer_ESM-1b

Figure 32: Performance plot for the Sensitivity metric
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Comparison Results for Specificity

Metric  Pair Medians of diff. p-value  Signif.

Specif. ET_ESM2 vs ET_ESM1b  0.084 (0.019, 0.264)  0.01718 Yes
Table 73: Comparison Results for Specificity
Specificity
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Figure 33: Performance plot for the Specificity metric
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Summary of Comparison Results

Met- Pair Medians of diff. p-value  Signif.
ric

AUC ET_ESM2 vs ET_ESM1b  -0.003 (-0.029, 0.024) 0.86949 No
BACC  ET ESM2vs ET ESM1b  0.007 (-0.033, 0.039) 0.70118 No
F1 ET ESM2vs ET ESM1b -0.051 (-0.107, -0.004)  0.03277 Yes
MCC ET ESM2 vs ET ESM1b  0.023 (-0.046, 0.080) 0.57060 No
NPV ET ESM2 vs ET ESM1b  0.006 (-0.026, 0.069) 0.84082 No
PPV ET_ESM2 vs ET _ESM1b  0.008 (-0.034, 0.044) 0.64766 No
Sensit.  ET ESM2 vs ET_ESM1b  -0.109 (-0.224, -0.014)  0.02395 Yes
Specif. ET ESM2 vs ET ESMI1b 0.084 (0.019, 0.264) 0.01718 Yes

Table 74: Summary of comparison results across all metrics.
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