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PROBLEM

OBJECTIVE

Practice-theory gap in Deep Learning Generalisation 
[Zha+16, Rah18]. 

IBT presents new perspective that may help fill this gap. 

No comprehensive digest of IBT or comparison to MLT.

To investigate to what extent can IBT help us understand 
Deep Learning generalisation, presenting its strengths, 
weaknesses and research opportunities in a digest.

INTRODUCTION

[Zha+16] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep learning requires rethinking 
generalization. 2016. arXiv: 1611.03530.  

[Rah18] Ali Rahimi. Ali Rahimi NIPS 2017 Test-of-Time Award Presentation Speech. https://youtu.be/x7psGHgatGM. [Online; Last accessed 
on 2020-08-04.] Mar. 7, 2018. url: https://youtu.be/x7psGHgatGM. 
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RESEARCH QUESTIONS

1. What are IBT fundamentals? 

2. IBT and MLT differences and similarities? 

3. Does IBT explain what MLT does? 

4. Does IBT invalidate MLT results? 

5. Can IBT explain phenomena currently  
not well understood? 

6. IBT strengths? 

7. IBT weaknesses? 

8. What has been already developed in IBT? 

9. IBT Research opportunities?

METHODOLOGY

INTRODUCTION
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MACHINE LEARNING THEORY
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Learning as search in the hypothesis space

P(X,Y)

P(X) P(Y|X)

!: #!×%!→ Θ

ℎ(*, ,)

Nature

Problem Generator Task Supervisor

Learning Algorithm

Hypothesis

*"!

*#

./#

/#

*#

*"! /"! Training Time

Test Time

BACKGROUND

hH := arg min R̂(h)
h∈H
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BACKGROUND

INFORMATION THEORETICAL LEARNING
Learning as a communication problem
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ЯQ = I[D; ̂T ]

dQ = ⟨d(D; ̂T )⟩

BACKGROUND

INFORMATION THEORETICAL LEARNING
Learning as a communication problem
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�� a2 + b2 = c2

Яa2+b2=c2

Q = I[D; ̂T ] < ЯQ

da2+b2=c2

Q = ⟨d(D; ̂T )⟩ < dQ

BACKGROUND

INFORMATION THEORETICAL LEARNING
Learning as a communication problem
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P(D|T) Q(T|D) Q(D|T)
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�� a2 + b2 = c2

Яa2+b2=c2

Q = I[D; ̂T ] < ЯQ

da2+b2=c2

Q = ⟨d(D; ̂T )⟩ < dQ

BACKGROUND

INFORMATION THEORETICAL LEARNING
Learning as a communication problem

Я(ϵ) ≡ min
Q: ⟨d(x;z)⟩≤ϵ

I[D; ̂T ]



MLT VS. ITML
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From the ground up

Information !eory

2nd Law

1st LawSTL
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Information Bottleneck !eory

IB and RL

IB and DL
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Rationalist
View Knowledge Sceptical
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MLT ITML

• P(X,Y) is fixed, no “time” parameter; 

• Optimisation problem: search; 

• Loss-metric agnostic (Risk function);

• P(X,Y) is fixed, no “time” parameter; 

• Optimisation problem: compression; 

• Loss-metric agnostic (Distortion function);

BACKGROUND >  MLT VS. ITML
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MLT ITML

• P(X,Y) is fixed, no “time” parameter; 

• Optimisation problem: search; 

• Loss-metric agnostic (Risk function);

• P(X,Y) is fixed, no “time” parameter; 

• Optimisation problem: compression; 

• Loss-metric agnostic (Distortion function);

BACKGROUND >  MLT VS. ITML
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MLT ITML

• P(X,Y) is fixed, no “time” parameter; 

• Optimisation problem: search; 

• Loss-metric agnostic (Risk function); 

• Hypothesis-space dependent; 

• Task independent; 

• Continuous random variables; 

• Possibly infinite input and target spaces; 

• Unknown P(Y|X) can be deterministic; 

• Independent sampling;

• P(X,Y) is fixed, no “time” parameter; 

• Optimisation problem: compression; 

• Loss-metric agnostic (Distortion function); 

• Task dependent; 

• Hypothesis-space independent; 

• Discrete random variables; 

• Finite input and target spaces; 

• Unknown P(Y|X) is stochastic; 

• Ergodic process sampling;

BACKGROUND >  MLT VS. ITML
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MLT ITML

• P(X,Y) is fixed, no “time” parameter; 

• Optimisation problem: search; 

• Loss-metric agnostic (Risk function); 

• Hypothesis-space-dependent; 

• Task-independent; 

• Continuous random variables; 

• Possibly infinite input and target spaces; 

• Unknown P(Y|X) can be deterministic; 

• Independent sampling;

• P(X,Y) is fixed, no “time” parameter; 

• Optimisation problem: compression; 

• Loss-metric agnostic (Distortion function); 

• Task-dependent; 

• Hypothesis-space-independent; 

• Discrete random variables; 

• Finite input and target spaces; 

• Unknown P(Y|X) is stochastic; 

• Ergodic process sampling;

≡

BACKGROUND >  MLT VS. ITML



ANSWERING RESEARCH QUESTIONS 1 TO 4
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If MLT  ITML, what is the point ?≡

MLT vs ITML (IBT included): 

Share most assumptions; 

Differences are conciliable choices:  
e.g. MDL[HVC93] and PAC-Shannon (sec. 6.2); 

What is the point? 

BACKGROUND >  MLT VS. ITML

[HVC93] Geoffrey E Hinton and Drew Van Camp. “Keeping the neural networks simple by minimizing the description length of the weights”. 
In: Proceedings of the sixth annual conference on Computational learning theory. 1993, pp. 5–13. 



ANSWERING RESEARCH QUESTIONS 1 TO 4
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If MLT  ITML, what is the point ?≡

MLT vs ITML (IBT included): 

Share most assumptions; 

Differences are conciliable choices:  
e.g. MDL[HVC93] and PAC-Shannon (sec. 6.2); 

What is the point?  A new narrative.

BACKGROUND >  MLT VS. ITML

[Mac02] David J. C. MacKay. Information Theory, Inference, and Learning Algorithms. USA: Cambridge University Press, 
2002. isbn: 0521642981. 



IB PRINCIPLE
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Relevance through a target variable

An arbitrary distortion function is an arbitrary feature selection [TPB99]. 

INFORMATION BOTTLENECK THEORY
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Y X YZ ^

cat 99% cat

INFORMATION BOTTLENECK THEORY

IB PRINCIPLE
Relevance through a target variable

An arbitrary distortion function is an arbitrary feature selection [TPB99]. 
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Unknown Known

[TPB99] Naftali Tishby, Fernando C. Pereira, and William Bialek. “The Information Bottleneck Method”. In: Proc. of the 37-th Annual Allerton 
Conference on Communication, Control and Computing. 1999, pp. 368–377.  

Relevance is task-dependent.
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Y X YZ ^

IB PRINCIPLE
Relevance through a target variable

An arbitrary distortion function is an arbitrary feature selection [TPB99]. 

INFORMATION BOTTLENECK THEORY

Theorem 7.2. If �d�x; z��p�x,z��I�X;Y� �I�Z;Y�, then
d�x;z� �DKL�p�y�x���p�y�z��.

ℒ(Z) = I[Z; X] + βI[Z; Y ] IB Lagrangian

ЯIB(ϵ) = min
Q: I[X;Y]−I[Z;Y]≤ϵ

I[Z; X]

Relevance is task-dependent.



INFORMATION BOTTLENECK THEORY
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Information Bottleneck principle applied to Deep Learning

Naftali Tishby
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Dataset

F����� �.�: A Deep Neural Network as a
Markov-chain in the Information Bottleneck
perspective.

�.�.� SGD in IBT

One of the most contentious topics in IBT is the assumption that
q(z�x) and q(y�z) are stochastic. Noise plays a very important role in
training [HVC��; AS��a; KSW��]. In IBT, noise reduces capacity and,[HVC��] Hinton and Van Camp, ‘Keeping

the neural networks simple by minimizing
the description length of the weights’.

[AS��a] Achille and Soatto, ‘Emergence
of Invariance and Disentangling in Deep
Representations’.

[KSW��] Kingma et al., ‘Variational Dropout
and the Local Reparameterization Trick’.
���: https : / / proceedings .

neurips . cc / paper / 2015 / file /

bc7316929fe1545bf0b98d114ee3ecb8-Paper.pdf

therefore, the size of the typical hypothesis space (as it will be shown
in Section �.�.�).

Counter-intuitively, Chaudhari and Soatto [CS��] proves (with

[CS��] Chaudhari and Soatto, ‘Stochastic
Gradient Descent Performs Variational
Inference, Converges to Limit Cycles for
Deep Networks’.

theory and extensive empirical evidence) that SGD performs vari-
ational inference for a di�erent loss than the one used to compute the
gradients and that this loss has a regulariser term that is equivalent to
the information bottleneck principle (Corollary �).

�.�.� Loss function in IBT

�e IB Principle (Chapter �) provides compelling grounds for the use
of the Kullback-Leibler divergence (DKL) as the canonical loss function.
It is equivalent by a constant to the cross-entropy loss, which became
ubiquitous in DL (as shown in Section �.�).

�.� ����������
We are using the name Information Bottleneck �eory (IBT) as an
“umbrella” to designate the work that relates to our selected literat-
ure (Appendix A). Frankly, the designation has not been adopted
consistently. Nonetheless, we can identify three kinds of literature:

�. IB-based analysis of Deep Learning

What for?   
Analysis, opening the “black-box” [ST17].

INFORMATION BOTTLENECK THEORY

[TZ15, ST17]
[ST17] Ravid Shwartz-Ziv and Naftali Tishby. “Opening the Black Box of Deep Neural Networks via Information”. In: (2017). arXiv: 1703.00810.  

[TZ15] Naftali Tishby and Noga Zaslavsky. “Deep learning and the information bottleneck principle”. In: 2015 IEEE Information Theory 
Workshop (ITW). IEEE. 2015, pp. 1–5.



IBT MAIN THESIS
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Learning is forgetting

Phase transition during training:  
Fitting phase vs. Compression phase.

I[Z; X]

I[Z; Y ]

I[Z; X] I[Z; X]

INFORMATION BOTTLENECK THEORY

Naftali Tishby
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IBT CRITICISM
"Throwing the baby with the bathwater”?

Several papers challenged IBT initial efforts [Sax+18, Gol+19, CHO19] for different reasons: 

• Discrete versus continuous random variables; 

• IB is ill-posed for deterministic or invertible functions; 

• Information in the activations: Stochastic mapping? Why? How? 

• Information measurement did not convince; 

• “Just an analysis tool” versus “a new Deep Learning Theory”; 

• Analysis overlooked for lack of confidence in the theory.

INFORMATION BOTTLENECK THEORY

[Sax+18] Andrew Michael Saxe, Yamini Bansal, Joel Dapello, Madhu Advani, Artemy 
Kolchinsky, Brendan Daniel Tracey, and David Daniel Cox. “On the Information 
Bottleneck Theory of Deep Learning”. In: International Conference on Learning 
Representations. 2018.  

[Gol+19] Ziv Goldfeld, Ewout van den Berg, Kristjan Greenewald, Brian Kingsbury, 
Igor Melnyk, Nam Nguyen, and Yury Polyanskiy. Estimating Information Flow in 
DNNs. 2019.  

[CHO19] Ivan Chelombiev, Conor Houghton, and Cian O’Donnell. “Adaptive 
Estimators Show Information Compression in Deep Neural Networks”. 
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IBT CRITICISM
"Throwing the baby with the bathwater”?

Several papers challenged IBT initial efforts [Sax+18, Gol+19, CHO19] for different reasons: 

• Discrete versus continuous random variables; 

• IB is ill-posed for deterministic or invertible functions; 

• Information in the activations: Stochastic mapping? Why? How? 

• Information measurement did not convince; 

• “Just an analysis tool” versus “a new Deep Learning Theory”; 

• Analysis overlooked for lack of confidence in the theory.

INFORMATION BOTTLENECK THEORY

‘I would not call [IBT] a proven rigorous theory’ 
— Tishby[Tis20].  



IB AND REPRESENTATION LEARNING
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Filling the gaps

Stefano Soatto

Prof. Soatto’s team extensive body of work: 

• Addresses the problem of bounding the information in the 
activations; 

• Explains the emergence of generalisation and disentanglement; 

• Shows the crucial role of noise in generalisation; 

• Proposes a variational method for estimating mutual information; 

• Relates the information in the weights to PAC-Bayes. 

… and more.

INFORMATION BOTTLENECK THEORY

[AS19] Alessandro Achille and Stefano Soatto. Where is the Information in a Deep Neural Network? 2019. arXiv: 
1905.12213 [cs.LG].

[AS18a] Alessandro Achille and Stefano Soatto. “Emergence of Invariance and Disentangling in Deep Representations”. 
In: J. Mach. Learn. Res. 19.1 (Jan. 2018), pp. 1947–1980. issn: 1532-4435.

[CS18] P. Chaudhari and S. Soatto. “Stochastic Gradient Descent Performs Variational Inference, Converges to Limit Cycles for Deep Networks”. 
In: 2018 Information Theory and Applications Workshop (ITA). 2018, pp. 1–10. doi: 10.1109/ITA.2018.8503224.

[AS18b] Alessandro Achille and Stefano Soatto. “Information Dropout: Learning Optimal Representations Through Noisy Computation”. In: 
IEEE Transactions on Pattern Analysis and Machine Intelligence 40.12 (2018), pp. 2897–2905.

[AMS18] Alessandro Achille, Glen Mbeng, and Stefano Soatto. Dynamics and Reachability of Learning Tasks. 2018. arXiv: 1810.02440.  

[ARS17] Alessandro Achille, Matteo Rovere, and Stefano Soatto. Critical Learning Periods in Deep Neural Networks. 2017. arXiv: 1711.08856. 

[Ach+19a]Alessandro Achille, Michael Lam, Rahul Tewari, Avinash Ravichandran, Subhransu Maji, Charless Fowlkes, Stefano Soatto, and Pietro 
Perona. “Task2Vec: Task Embedding for Meta-Learning”. In: The IEEE International Conference on Computer Vision (ICCV). Oct. 2019. 

[AS18b]
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Filling the gaps

Stefano Soatto

Prof. Soatto’s team extensive body of work: 

• Addresses the problem of bounding the information in the 
activations; 

• Explains the emergence of generalisation and disentanglement; 

• Shows the crucial role of noise in generalisation; 

• Proposes a variational method for estimating mutual information; 

• Relates the information in the weights to PAC-Bayes. 

… and more.

INFORMATION BOTTLENECK THEORY

Desiderata for 
Representations Activations IB

Activations IB  
x 

Weights IB

IB Learning 
X 

Deep Learning



DESIDERATA FOR REPRESENTATIONS
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What is a good representation?

The best representation  of data X for task  is [AS18a]: 

sufficient:     

invariant:     

minimal:    

disentangled:  

Z := P(Z |X) Y := P(Y |X)

I[Z; Y ] = I[X; Y ]

η ⊥ Y → I[η; Y ] = 0 → I[η; Z] = 0

I[Z; X] = I[Z; Y ]

TC(Z) = DKL(P(Z)∥
n

∏
i=1

P(Zi)) = 0

INFORMATION BOTTLENECK THEORY > IB AND REPRESENTATION LEARNING

Y X YZ ^

Unknown Known

accuracy

generalisation

explainability

accuracy

sufficient minimal



DESIDERATA FOR REPRESENTATIONS
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What is a good representation?

Z := arg min I[Z; X]
s.t.

0 ≤ I[X; Y ] − I[Z; Y ]
0 ≤ TC(Z) .

Y X YZ ^

Unknown Known

A good representation can be formulated as [AS18a]: 

minimal/invariant

sufficient
disentangled

INFORMATION BOTTLENECK THEORY > IB AND REPRESENTATION LEARNING
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What is a good representation?

Z := arg min I[Z; X]
s.t.

0 ≤ I[X; Y ] − I[Z; Y ]
0 ≤ TC(Z) .

Y X YZ ^

Unknown Known

Using the Lagrangian relaxation: 

L(Z) = Hp,q[Y |Z] + β−1{I[Z; X] + TC(Z)} Activations IB [AS18a]

minimal

sufficient
disentangled

[TPB99, ST17]

INFORMATION BOTTLENECK THEORY > IB AND REPRESENTATION LEARNING

A good representation can be formulated as [AS18a]: 



THE IB “ACHILLE’S HEEL”
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Two levels of representations 

P(X,Y)

P(X) P(Y|X)

!: #!×%!→ '

ℎ(*, ,)

Nature

Problem Generator Task Supervisor

Learning Algorithm

Hypothesis

*"!

*#

./#

/#

*#

*"! /"!

0 → ' → ℎ: 1(%|#)

# → 3 → 4%

1

2

Training Time

Test Time L(Z) = Hp,q[Y |Z] + β−1I[Z; X]

Activations IB  
[TPB99, ST17]

Activations IB is incomputable:  

Z is a representation of yet not observed future data. 

Valid min I[Z;X] during training  memorise indexes of each label. 

Once the weights are fixed, not a stochastic mapping. 

No access to true distribution P(X,Y).

→

INFORMATION BOTTLENECK THEORY > IB AND REPRESENTATION LEARNING

Alessandro Achille



RETHINKING GENERALISATION
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Cross-entropy decomposition and overfitting

Problem: Deep Learning pseudo-paradox [Zha+16].   
                  can fit random labels, yet generalise; 

Cross-entropy decomposition, assuming   [AS18a]:

→

D ∼ P(D |θ)

Hp,q[D |W ] = Hp[D |θ]

intrinsic error

+ I[θ; D |W ]

sufficiency

+ DKL(p ∥ q)

efficiency

− I[D; W |θ]

memorisation

INFORMATION BOTTLENECK THEORY > IB AND REPRESENTATION LEARNING
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Cross-entropy decomposition and overfitting

Problem: Deep Learning pseudo-paradox [Zha+16].   
                  can fit random labels, yet generalise; 

Cross entropy decomposition, assuming   [AS18a]:

→

D ∼ P(D |θ)

Naïve solution: 

Hp,q[D |W ] = Hp[D |θ]

intrinsic error

+ I[θ; D |W ]

sufficiency

+ DKL(p ∥ q)

efficiency

− I[D; W |θ]

memorisation

L(W ) = Hp,q[D |W ] + I[D; W |θ] intractable,  is unknown.θ

INFORMATION BOTTLENECK THEORY > IB AND REPRESENTATION LEARNING
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Cross-entropy decomposition and overfitting

Problem: Deep Learning pseudo-paradox [Zha+16].   
                  can fit random labels, yet generalise; 

Cross entropy decomposition, assuming   [AS18a]:

→

D ∼ P(D |θ)

Naïve solution: 

Hp,q[D |W ] = Hp[D |θ]

intrinsic error

+ I[θ; D |W ]

sufficiency

+ DKL(p ∥ q)

efficiency

− I[D; W |θ]

memorisation

L(W ) = Hp,q[D |W ] + I[D; W |θ] intractable,  is unknown.θ

But we can upper bound : I[D; W |θ]

L(W ) = Hp,q[D |W ] + β−1I[D; W ] Weights IB [AS18a, AS19]

INFORMATION BOTTLENECK THEORY > IB AND REPRESENTATION LEARNING
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P(X,Y)

P(X) P(Y|X)

!: #!×%!→ '

ℎ(*, ,)

Nature

Problem Generator Task Supervisor

Learning Algorithm

Hypothesis

*"!

*#

./#

/#

*#

*"! /"!

0 → ' → ℎ: 1(%|#)

# → 3 → 4%

1

2

Training Time

Test Time

ℒ(Z) = Hp,q[Y |Z] + β−1I[Z; X]

Activations IB  
[TPB99, ST17]

ℒ(W ) = Hp,q[D |W ] + β−1I[D; W ]

Weights IB 
[AS18a, AS19]

ACTIVATIONS IB VS. WEIGHTS IB
Where is the information in Deep Neural Networks?

INFORMATION BOTTLENECK THEORY > IB AND REPRESENTATION LEARNING
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P(X,Y)

P(X) P(Y|X)

!: #!×%!→ '

ℎ(*, ,)

Nature

Problem Generator Task Supervisor

Learning Algorithm

Hypothesis

*"!

*#

./#

/#

*#

*"! /"!

0 → ' → ℎ: 1(%|#)

# → 3 → 4%

1

2

Training Time

Test Time

ℒ(Z) = Hp,q[Y |Z] + β−1I[Z; X]

Activations IB  
[TPB99, ST17]

ℒ(W ) = Hp,q[D |W ] + β−1I[D; W ]

Weights IB 
[AS18a, AS19]

ACTIVATIONS IB VS. WEIGHTS IB
Where is the information in Deep Neural Networks?

Bound [C.8 in AS18a]:

I[Z; X] ≤ I[W; D] ≤ log |F(w*) |

Fisher Information

INFORMATION BOTTLENECK THEORY > IB AND REPRESENTATION LEARNING
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DEEP LEARNING IBT LEARNING
Reality Ideal

Deep Learning components: 

DNN Architecture: deep 

SGD Optimiser 

Large Dataset: P(X,Y) is noisy 

 
Loss function: usually cross-entropy  

 ℒ(W ) = Hp,q[D |W ]

ℒ(W ) = Hp,q[D |W ] + β−1I[D; W ]

regulariser

INFORMATION BOTTLENECK THEORY > IBT AND DEEP LEARNING
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DEEP LEARNING IBT LEARNING
Reality Ideal

Deep Learning components: 

DNN Architecture: deep 

SGD Optimiser 

Large Dataset: P(X,Y) is noisy 

 
Loss function: usually cross-entropy  

 ℒ(W ) = Hp,q[D |W ]

ℒ(W ) = Hp,q[D |W ] + β−1I[D; W ]

regulariser

Ways to reduce information: 

Explicit regulariser in the loss function:  
Information Dropout [As18b] 

Implicit by architecture: 
Reduce dimension (layers, max-pooling) 
Add noise (dropout) 

Problem [Zha+16]: 
Generalisation without regularisers in the 
loss or architecture. 

Can layers explain it all?

INFORMATION BOTTLENECK THEORY > IBT AND DEEP LEARNING
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THE ROLE OF NOISE IN SGD
The last piece of the puzzle

Chaudhari and Soatto [CS18] prove with theory and 
empirical evidence that: 

SGD performs variational inference with an implicit loss; 

SGD implicit loss has an information regulariser term.

ℒ(W ) = Hp,q[D |W ] + β−1I[D; W ]

SGD implicit regulariser

INFORMATION BOTTLENECK THEORY > IBT AND DEEP LEARNING
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DEEP LEARNING PHENOMENA IN THE IBT NARRATIVE
Answering Research Question 5: Part I

Generalisation  despite model capacity/expressiveness: 
Information in the weights as the effective capacity measure. 

Deep Learning bias towards disentangled representations: 
SGD  I[W;D] implicit regulariser  upper-bound on I[Z;X]+TC 

Scarcity of sharp minima in SGD optimisation: 
SGD  low I[W;D]  low Fisher Information  curvature of loss 

→ →

→ → →

INFORMATION BOTTLENECK THEORY > IBT AND DEEP LEARNING
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DEEP LEARNING PHENOMENA IN THE IBT NARRATIVE
Answering Research Question 5: Part II

Critical Learning Periods [ARS17]: 
Deficit  higher Fisher Information  memorisation 

Phase transition  Fitting phase/high curvature 
 

→ →

→

Published as a conference paper at ICLR 2019

Figure 4: Critical periods in DNNs are traced back to changes in the Fisher Information.
(Left) Trace of the Fisher Information of the network weights as a function of the training epoch
(blue line), showing two distinct phases of training: First, information sharply increases, but once
test performance starts to plateau (green line), the information in the weights decreases during a
“consolidation” phase. Eventually less information is stored, yet test accuracy improves slightly
(green line). The weights’ Fisher Information correlates strongly with the networks sensitivity to
critical periods, computed as in Figure 1 using both a window size of 40 and 60, and fitted here to
the Fisher Information using a simple exponential fit. (Center) Recalling the connection between
FIM ad connectivity, we may compare it to synaptic density during development in the visual cortex
of macaques (Rakic et al., 1986). Here too, a rapid increase in connectivity is followed by elimina-
tion of synapses (pruning) continuing throughout life. (Right) Effects of a critical period-inducing
blurring deficit on the Fisher Information: The impaired network uses more information to solve the
task, compared to training in the absence of a deficit, since it is forced to memorize the labels case
by case.

hyperparameters of the optimization can change the shape of the critical period: In Figure 3 (Bottom
Left) we show that increasing weight decay makes critical periods longer and less sharp. This can be
explained as it both slows the convergence of the network, and it limits the ability of higher layers
to change to overcome the deficit, thus encouraging lower layers to also learn new features.

3 FISHER INFORMATION ANALYSIS

We have established empirically that, in animals and DNNs alike, the initial phases of training
are critical to the outcome of the training process. In animals, this strongly relates to changes
in the brain architecture of the areas associated with the deficit (Daw, 2014). This is inevitably
different in artificial networks, since their connectivity is formally fixed at all times during training.
However, not all the connections are equally useful to the network: Consider a network encoding
the approximate posterior distribution pw(y|x), parameterized by the weights w, of the task variable
y given an input image x. The dependency of the final output from a specific connection can be
estimated by perturbing the corresponding weight and looking at the magnitude of the change in the
final distribution. Specifically, given a perturbation w

0 = w + �w of the weights, the discrepancy
between the pw(y|x) and the perturbed network output pw0(y|x) can be measured by their Kullback-
Leibler divergence, which, to second-order approximation, is given by:

Ex KL( pw0(y|x) k pw(y|x) ) = �w · F �w + o(�w2),

where the expectation over x is computed using the empirical data distribution Q̂(x) given by the
dataset, and

F := Ex⇠Q̂(x)Ey⇠pw(y|x)[rw log pw(y|x)rw log pw(y|x)T ]

is the Fisher Information Matrix (FIM). The FIM can thus be considered a local metric measuring
how much the perturbation of a single weight (or a combination of weights) affects the output of
the network (Amari & Nagaoka, 2000). In particular, weights with low Fisher Information can be
changed or “pruned” with little effect on the network’s performance. This suggests that the Fisher
Information can be used as a measure of the effective connectivity of a DNN, or, more generally, of
the “synaptic strength” of a connection (Kirkpatrick et al., 2017). Finally, the FIM is also a semi-
definite approximation of the Hessian of the loss function (Martens, 2014) and hence of the curvature
of the loss landscape at a particular point w during training, providing an elegant connection between
the FIM and the optimization procedure (Amari & Nagaoka, 2000), which we will also employ later.

5
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[Wie82] Torsten N. Wiesel. “Postnatal Development of the Visual Cortex and the Influence of Environment”. In: Nature 299.5884 (Oct. 1982), 
pp. 583–591. issn: 1476-4687. doi: 10.1038/299583a0.

[Wie82] 
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CONCLUSION
IBT strengths, weaknesses and research opportunities

STRENGTHS Narrative: connects seemly unrelated phenomena and 
practices; 

Analysis: information in the weights “opens the black-
box”; 

Task-dependent loss: not arbitrary ;

WEAKNESSES Lack of rigour: overlooking important assumptions; 

Discredit: critiques were hardly unjustified; 

Fragmentation: Literature is still very fragmented;
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CONCLUSION
IBT strengths, weaknesses and research opportunities

RESEARCH 
OPPORTUNITIES

PAC reformulation:  unifies ; 

New optimisation strategies: different approaches for the 
fitting and compression phases; 

Transfer learning: Validate topologies of learning tasks 
built from IBT(e.g. Task2Vec [Ach+19]), with empirical 
ones (e.g. Taskonomy[Zam+18]);

β (ϵ, δ)

[Zam+18] Amir R Zamir, Alexander Sax, William Shen, Leonidas J Guibas, Jitendra Malik, and Silvio Savarese. “Taskonomy: Disentangling task 
transfer learning”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018, pp. 3712–3722. 
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CONCLUSION

Information Bottleneck Theory, 

far from being rigorous and complete, 

is an emerging and exciting topic 

with a compelling narrative 

and many open opportunities.
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