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PROBLEM

OBJECTIVE

Practice-theory gap in Deep Learning Generalisation
|Zha+16, Rah18].

IBT presents new perspective that may help fill this gap.

No comprehensive digest of IBT or comparison to MLT.

To investigate to what extent can IBT help us understand
Deep Learning generalisation, presenting its strengths,
weaknesses and research opportunities in a digest.

[Zha+16] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep learning requires rethinking
generalization. 2016. arXiv: 1611.03530.

[Rah18] Ali Rahimi. Ali Rahimi NIPS 2017 Test-of-Time Award Presentation Speech. https://youtu.be/x7psGHgatGM. [Online; Last accessed
on 2020-08-04.] Mar. 7, 2018. url: https://youtu.be/x7psGHgatGM.

3 INTRODUCTION
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RESEARCH QQUESTIONS

1. What are IBT fundamentals?

2. IBT and MLT diftferences and similarities?
3. Does IBT explain what MLT does?

4, Does IBT invalidate MLT results?

5. Can IBT explain phenomena currently
not well understood?

6. IBT strengths?
7. IBT weaknesses?

8. What has been already developed in IBT?

9. IBT Research opportunities?

METHODOLOGY

~
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MACHINE LEARNING THEORY
Learning as search in the hypothesis space

Nature
P(X)Y)
Problem Generator n Task Supervisor
\ 4 xi \ 4
P(X) | PY|IX) >
. Yj
X J
X! Learning #lgorithm yln Training Time
| A X'XY"> 0 |
Test Time
Xj
= h(x, 0) =
5}.
Hypothesis g

+ ﬁbayes

Bias Error

hy, = arg min R(h)

A

heH
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INFORMATION THEORETICAL LEARNING

Learning as a communication problem

Nature Epistemic Agent

O——®- O,

"Law of Nature" Observations Understanding
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INFORMATION THEORETICAL LEARNING

Learning as a communication problem

| . .
Nature | Epistemic Agent

|
|
|

@ P(D|T) @ Q(T|D) : Q(D|T)
|

Theorem Data Theory Prediction
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INFORMATION THEORETICAL LEARNING

Learning as a communication problem

Nature i Epistemic Agent
I
I
@ P(D|T) @ Q(T|D) : Q(DIT)
Theorem Data Prediction
‘B A% = I[D; T
/1P N | .
: : dy'=(d(D;T))
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INFORMATION THEORETICAL LEARNING

Learning as a communication problem

Nature

@ P(D|T)

Epistemic Agent

Q(T|D) : Q(D|T)

_@______

Theorem Data Theory Prediction
3.5 2 2 2
4 a” + b = C 24 b%=c? -
7|k | 4= = 1D, T1 < g

2 dg2+b2:c2 — <d(D, T)) < 3%;

~
N
bV
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INFORMATION THEORETICAL LEARNING

Learning as a communication problem

10

Nature

@ P(D|T)

Epistemic Agent

Q(T|D) : Q(D|T) ,‘E

_@______

Theorem Data Theory Prediction
‘B 2, 122 ——
a 12 20122 A
7:25 dg +b°=c — (d(D, T)) < };

Ae)= min I[D;T]
Q: (d(x;2))<e
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MLT vs. ITML

From the ground up

Information Bottleneck Theory

11  BACKGROUND

IB and DL
IB and RL
Information Theoretical ML Theory
PAC-Shannon
MDL
IB-method
PAC-Bayes 2 Law
STL || PAC It Law
Machine Learning Theory Information Theory
Symbolism || Connectionism
Artificial Intelligence
Logic Bayesian Inference
Language
Math Science
Rationalist Sceptical
View l(nowlea’g € View
Intelligence
Epistemology

Information
Theory

Bayesmn lnference

‘ Math '

Knowledge

Intelligence
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MLT

~

o P(X,Y) is fixed, no “time” parameter;
o Optimisation problem: search;

o Loss-metric agnostic (Risk function);

12

ITML '

o P(X,Y) is fixed, no “time” parameter;
« Optimisation problem: compression;

o Loss-metric agnostic (Distortion function);
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ITML '

o P(X,Y) is fixed, no “time” parameter;
« Optimisation problem: compression;

o Loss-metric agnostic (Distortion function);
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MLT

~

14

P(X,Y) is fixed, no “time” parameter;
Optimisation problem: search;
Loss-metric agnostic (Risk function);
Hypothesis-space dependent;

Task independent;

Continuous random variables;

Possibly infinite input and target spaces;
Unknown P(Y|X) can be deterministic;

Independent sampling;

ITML '

o P(X,Y) is fixed, no “time” parameter;

« Optimisation problem: compression;

o Loss-metric agnostic (Distortion function);
o Task dependent;

« Hypothesis-space independent;

o Discrete random variables;

o Finite input and target spaces;

« Unknown P(Y|X) is stochastic;

o Ergodic process sampling;
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MLT

~

15

P(X,Y) is fixed, no “time” parameter;
Optimisation problem: search;
Loss-metric agnostic (Risk function);
Hypothesis-space-dependent;
Task-independent;

Continuous random variables;

Possibly infinite input and target spaces;
Unknown P(Y|X) can be deterministic;

Independent sampling;

ITML '

M =

o P(X,Y) is fixed, no “time” parameter;

« Optimisation problem: compression;

o Loss-metric agnostic (Distortion function);
o Task-dependent;

« Hypothesis-space-independent;

o Discrete random variables;

o Finite input and target spaces;

« Unknown P(Y|X) is stochastic;

o Ergodic process sampling;
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ANSWERING RESEARCH QQUESTIONS 1 TO 4
If MLT = ITML, what is the point ?

MLT vs ITML (IBT included):
Share most assumptions;

Differences are conciliable choices:
e.g. MDL[HV(C93] and PAC-Shannon (sec. 6.2);

What is the point?

[HVC93] Geoffrey E Hinton and Drew Van Camp. “Keeping the neural networks simple by minimizing the description length of the weights”.
In: Proceedings of the sixth annual conference on Computational learning theory. 1993, pp. 5-13.
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ANSWERING RESEARCH QQUESTIONS 1 TO 4
If MLT = ITML, what is the point ¢

MLT vs ITML (IBT included):
Share most assumptions;

Differences are conciliable choices:
e.g. MDL[HV(C93] and PAC-Shannon (sec. 6.2);

What is the point? A new narrative.

[Mac02] David J. C. MacKay. Information Theory, Inference, and Learning Algorithms. USA: Cambridge University Press,
2002. isbn: 0521642981.
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IB PRINCIPLE

Relevance through a target variable

An arbitrary distortion function is an arbitrary feature selection [TPB99].

Unknown Known

@ P(D|T) @ Q(T|D) @ Q(D|T) ‘:

{x y7" 2 X,
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IB PRINCIPLE

Relevance through a target variable

An arbitrary distortion function is an arbitrary feature selection [TPB99].

Unknown Known

@ P(D|T) @ Q(T|D) @ Q(D|T) ‘:

{x y7" 2 X,

Relevance is task-dependent.

99% cat

O, O,

[TPB99] Naftali Tishby, Fernando C. Pereira, and William Bialek. “The Information Bottleneck Method”. In: Proc. of the 37-th Annual Allerton
Conference on Communication, Control and Computing. 1999, pp. 368-377.

19 B4 Universidade de Brasilia

A



IB PRINCIPLE

Relevance through a target variable

An arbitrary distortion function is an arbitrary feature selection [TPB99].

Theorem 72. If <d[x;z]) . =1IX; Y] —1[Z; Y], then
dlx;z] =Dy (p(ylx)lip(yiz)).

Relevance is task-dependent.
B, | _ : ,
A (e) = min 11Z; X]
Q: I X;Y]-1Z,Y]<e

L) =11Z; X+ plIZ;Y] IB Lagrangian

O—C O, O,
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INFORMATION BOTTLENECK THEORY
Information Bottleneck principle applied to Deep Learning

Dataset Encoder Decoder
P(Zi|X) P(Y|Zi)

Naftali Tishby

What for?
@ Analysis, opening the “black-box™ [ST17].

|'TZ15, ST17]

[ST17] Ravid Shwartz-Ziv and Naftali Tishby. “Opening the Black Box of Deep Neural Networks via Information”. In: (2017). arXiv: 1703.00810.

[TZ15] Naftali Tishby and Noga Zaslavsky. “Deep learning and the information bottleneck principle” In: 2015 IEEE Information Theory
Workshop (ITW). IEEE. 2015, pp. 1-5.
B4 Universidade de Brasilia
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IBT MAIN THESIS
Learning is forgetting

Y

v

il

Phase transition during training:
Fitting phase vs. Compression phase.

Naftali Tishby
0.7 : . . .F___ Six hidden Epochs4
., 1o
0.6} 1L |
0.5} 1L |
I[Z;Y] 0.4} I -
0.3} 1L |
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IBT CRITICISM
"Throwing the baby with the bathwater”?

Several papers challenged IBT initial efforts [Sax+18, Gol+19, CHO19] for different reasons:
o Discrete versus continuous random variables;

o IB isill-posed for deterministic or invertible functions;

o Information in the activations: Stochastic mapping? Why? How?

« Information measurement did not convince;

o “Just an analysis tool” versus “a new Deep Learning Theory”;

 Analysis overlooked for lack of confidence in the theory.

[Sax+18] Andrew Michael Saxe, Yamini Bansal, Joel Dapello, Madhu Advani, Artemy
Kolchinsky, Brendan Daniel Tracey, and David Daniel Cox. “On the Information
Bottleneck Theory of Deep Learning”. In: International Conference on Learning
Representations. 2018.

[Gol+19] Ziv Goldfeld, Ewout van den Berg, Kristjan Greenewald, Brian Kingsbury,
Igor Melnyk, Nam Nguyen, and Yury Polyanskiy. Estimating Information Flow in
DNNS. 2019.

[CHO19] Ivan Chelombiev, Conor Houghton, and Cian O’Donnell. “Adaptive
Estimators Show Information Compression in Deep Neural Networks”.

23 INFORMATION BOTTLENECK THEORY




IBT CRITICISM
"Throwing the baby with the bathwater”?

Several papers challenged IBT initial efforts [Sax+18, Gol+19, CHO19] for different reasons:
o Discrete versus continuous random variables;

o IB isill-posed for deterministic or invertible functions;

o Information in the activations: Stochastic mapping? Why? How?

« Information measurement did not convince;

o “Just an analysis tool” versus “a new Deep Learning Theory”;

 Analysis overlooked for lack of confidence in the theory.

‘I would not call [IBT] a proven rigorous theory’
— Tishby[Tis20].
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IB AND REPRESENTATION LEARNING
Filling the gaps

Prof. Soattos team extensive body of work:

- Addresses the problem of bounding the information in the

activations;

[AS19] Alessandro Achille and Stefano Soatto. Where is the Information in a Deep Neural Network? 2019. arXiv:
1905.12213 [cs.LG].

- Explains the emergence of generalisation and disentanglement;

[AS18a] Alessandro Achille and Stefano Soatto. “Emergence of Invariance and Disentangling in Deep Representations”.
In: J. Mach. Learn. Res. 19.1 (Jan. 2018), pp. 1947-1980. issn: 1532-4435.

- Shows the crucial role of noise in generalisation;

[CS18] P. Chaudhari and S. Soatto. “Stochastic Gradient Descent Performs Variational Inference, Converges to Limit Cycles for Deep Networks”.
In: 2018 Information Theory and Applications Workshop (ITA). 2018, pp. 1-10. doi: 10.1109/ITA.2018.8503224.

Stefano Soatto

- Proposes a variational method for estimating mutual information;

[AS18b] Alessandro Achille and Stefano Soatto. “Information Dropout: Learning Optimal Representations Through Noisy Computation”. In:
IEEE Transactions on Pattern Analysis and Machine Intelligence 40.12 (2018), pp. 2897-2905.

- Relates the information in the weights to PAC-Bayes.

[AS18b]

... and more.
[AMS18] Alessandro Achille, Glen Mbeng, and Stefano Soatto. Dynamics and Reachability of Learning Tasks. 2018. arXiv: 1810.02440.

[ARS17] Alessandro Achille, Matteo Rovere, and Stefano Soatto. Critical Learning Periods in Deep Neural Networks. 2017. arXiv: 1711.08856.

[Ach+19a]Alessandro Achille, Michael Lam, Rahul Tewari, Avinash Ravichandran, Subhransu Maji, Charless Fowlkes, Stefano Soatto, and Pietro
Perona. “Task2Vec: Task Embedding for Meta-Learning”. In: The IEEE International Conference on Computer Vision (ICCV). Oct. 2019.
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IB AND REPRESENTATION LEARNING
Filling the gaps

Prof. Soattos team extensive body of work:

- Addresses the problem of bounding the information in the
activations;

- Explains the emergence of generalisation and disentanglement;
Stefano Soatto

- Shows the crucial role of noise in generalisation;
- Proposes a variational method for estimating mutual information;

- Relates the information in the weights to PAC-Bayes.

... and more. — ,
Activations IB IB Learning

Activations IB X X
Weights 1B Deep Learning

Desiderata for

Representations
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DESIDERATA FOR REPRESENTATIONS

What is a good representation?

27

Unknown I Known I I

@ ® - O,

The best representation Z := P(Z| X) of data X for task Y := P(Y | X) is [AS18a]:

sufficient: I[Z; Y] =I[X; Y]

»  accuracy
invariant: # LY > I[n;Y]=0—->1[n;Z]=0

\

minimal: [Z: X] = I[Z: Y] 3 generalisation

disentangled: TC(Z) = D, (P@)|| [ [ P2)) = 0
i=1

»  explainability

7 minimal
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DESIDERATA FOR REPRESENTATIONS

What is a good representation?

Unknown I Known l i

@ ® - O,

A good representation can be formulated as [AS18a]:

Z = argminI[Z; X] minimal/invariant
S.t.

O0<LIIX;Y]|-=-1[ZY] sufhicient

0<TCZ). disentangled
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DESIDERATA FOR REPRESENTATIONS

What is a good representation?

Unknown I Known l []

@ ® - O,

A good representation can be formulated as [AS18a]:

Z :=argminl[Z; X] minimal

s.t.
O0<LIIX;Y]|-=-1[ZY] sufficient
0<TCZ). disentangled

Using the Lagrangian relaxation:

L(Z)=H, [Y|Z]+ p~H{I[Z; X1+ TC(Z)} Activations IB [AS18a]

VVV

[TPB99, ST17]
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THE IB “ACHILLE’S HEEL”

Two levels of representations

Nature

P(X)Y)
Problem Generator o0 Task Supervisor
! ) !
P(X) J PYIX) [—
] ";}""ZleZ,Z; Aoorithm 3_'2; _____________________ Training Time
@ Alessandro Achille
| A X'XY'> W | D->W - h:P(Y|X)
______________________ et Time _ —~1777.
© . | retme (Z)=H, [Y|Z] + p7[Z; X]
> h(x,w) > X->Z-Y
. ¥ . .
Hypothesis Activations IB

o o [TPB99, ST17)
Activations IB is incomputable:

Z. is a representation of yet not observed future data.
Valid min I[Z;X] during training — memorise indexes of each label.
Once the weights are fixed, not a stochastic mapping.

No access to true distribution P(X,Y).
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RETHINKING (GENERALISATION

Cross-entropy decomposition and overfitting

Problem: Deep Learning pseudo-paradox [Zha+16].
— can fit random labels, yet generalise;

Cross-entropy decomposition, assuming D ~ P(D|6) [AS18a]:

H,[DIWl= HID|O] +I[6;D|W] +Dg(p Il ¢) — IID; W|6]

ntrinsic error  sufficiency  efficiency ~ memorisation

31 INFORMATION BOTTLENECK THEORY > IB AND REPRESENTATION LEARNING B Universidade de Brasilia



RETHINKING (GENERALISATION

Cross-entropy decomposition and overfitting

Problem: Deep Learning pseudo-paradox [Zha+16].
— can fit random labels, yet generalise;

Cross entropy decomposition, assuming D ~ P(D|6) [AS18a]:

H,[DIWl= HID|O] +I[6;D|W] +Dg(p Il ¢) — IID; W|6]

ntrinsic error  sufficiency  efficiency ~ memorisation
Naive solution:

L(W)=H, [D|W]+I[D;W][0]  intractable, 8 is unknown.
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RETHINKING (GENERALISATION

Cross-entropy decomposition and overfitting

Problem: Deep Learning pseudo-paradox [Zha+16].
— can fit random labels, yet generalise;

Cross entropy decomposition, assuming D ~ P(D|6) [AS18a]:

H,[DIWl= HID|O] +I[6;D|W] +Dg(p Il ¢) — IID; W|6]

ntrinsic error  sufficiency  efficiency ~ memorisation
Naive solution:

L(W)=H, [D|W]+I[D;W][0]  intractable, 8 is unknown.
But we can upper bound /[D; W | 1.

L(W)=H, [D|W]+ p~1[D; W] Weights IB [AS18a, AS19]

33 INFORMATION BOTTLENECK THEORY > IB AND REPRESENTATION LEARNING B Universidade de Brasilia



ACTIVATIONS IB vS. WEIGHTS IB

Where is the information in Deep Neural Networks?

Nature

P(X)Y)
Problem Generator | " "Task Supervisor Weights IB

i PR L Y [AS18a, AS19]
_________ Car teaming Agorihm | Training Time |
@ | A X'XYPs W | D->W - h:P(Y|X) <g(‘l/) — Hp,q[D | W] + ﬁ I[D; W]
—~ | | LT
@ i > h(x, w) — X->Z-7Y g(Z) :Hp,q[le]_l_ﬁ_lI[Z’X]
Yj
Hypothesis

Activations IB
'TPB99, ST17]
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ACTIVATIONS IB vS. WEIGHTS IB

Where is the information in Deep Neural Networks?

P(X)Y)
Problem Generator | xln ‘ "Task Supervisor Weights IB
P ] rew [ [AS18a, AS19]
] Car ceaming Agorihm | Training Time
@ | A X"XY'S W e D->W - h:P(Y|X) Q(W) — Hp,q[D | W] + ﬁ II[D; W]
@ L s . xazod L(Z)=H, [Y|Z]+ p~1[Z; X]

Activations IB
'TPB99, ST17]

Bound [C.8 in AS18a]:

1Z; X] < IIW; D] < log| F(w*) |

Fisher Information
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DEEP LEARNING
Reality

IBT LEARNING
Ideal

Deep Learning components:
DNN Architecture: deep

SGD Optimiser

Large Dataset: P(X,Y) is noisy

Loss function: usually cross-entropy

PL(W)=H, [D|W]

36

ZW)=H, [D|W]+p~'I[D; W]

regulariser
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DEEP LEARNING
Reality

IBT LEARNING
Ideal

Deep Learning components:
DNN Architecture: deep

SGD Optimiser

Large Dataset: P(X,Y) is noisy

Loss function: usually cross-entropy

LW)=H, [D|W]

ZW)=H, [D|W]+p~'I[D; W]

regulariser
Ways to reduce information:

Explicit regulariser in the loss function:
Information Dropout [As18b]

Implicit by architecture:
Reduce dimension (layers, max-pooling)
Add noise (dropout)

Problem [Zha+16]:
Generalisation without regularisers in the
loss or architecture.

Can layers explain it all?

37 INFORMATION BOTTLENECK THEORY > IBT AND DEEP LEARNING B Universidade de Brasilia



THE ROLE OF NOISE IN SGD
The last piece of the puzzle

Chaudhari and Soatto [CS18] prove with theory and
empirical evidence that:
g ﬁ[
4 ]

SGD performs variational inference with an implicit loss;

SGD implicit loss has an information regulariser term.

ZW)=H, [D|W] + p=ID; W]

SGD implicit regulariser

38 INFORMATION BOTTLENECK THEORY > IBT AND DEEP LEARNING B Universidade de Brasilia



DEEP LEARNING PHENOMENA IN THE IBT NARRATIVE

Answering Research Question 5: Part I

Generalisation despite model capacity/expressiveness:
Information in the weights as the effective capacity measure.

Deep Learning bias towards disentangled representations:
SGD — I[W;D] implicit regulariser — upper-bound on I[[Z;X]+TC

Scarcity of sharp minima in SGD optimisation:
SGD — low I[W;D] — low Fisher Information — curvature of loss

Liw) |

v Shap Minimoem

w
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DEEP LEARNING PHENOMENA IN THE IBT NARRATIVE

Answering Research Question 5: Part 11

A P30 8 MD c

Critical Learning Periods [ARS17]: —
Deficit — higher Fisher Information — memorisation Sre- ©

eye
opening peak CP one eye covered wo eyes covared
I
|

{ 2272227777 |_—
P10 P30 P10 p:

Phase transition — Fitting phase/high curvature

Fisher Information vs. deficit end

O No deficit
8 .
& 1500 Untfl 30
= Until 50
I5 Until 70
E Until 220
=
© 500
=
N2
LL
0 1 : L
0 50 100 150 200

Epoch

[Wie82] Torsten N. Wiesel. “Postnatal Development of the Visual Cortex and the Influence of Environment”. In: Nature 299.5884 (Oct. 1982),
pp- 583-591. issn: 1476-4687. doi: 10.1038/299583a0.
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CONCLUSION

IBT strengths, weaknesses and research opportunities

STRENGTHS Narrative: connects seemly unrelated phenomena and
practices;

Analysis: information in the weights “opens the black-

»

box’;

Task-dependent loss: not arbitrary ;

WEAKNESSES Lack of rigour: overlooking important assumptions;
Discredit: critiques were hardly unjustified;

Fragmentation: Literature is still very fragmented;

41 I Universidade de Brasilia



CONCLUSION

IBT strengths, weaknesses and research opportunities

RESEARCH PAC reformulation: f unifies (¢, 6);

OPPORTUNITIES New optimisation strategies: different approaches for the

fitting and compression phases;

Transfer learning: Validate topologies of learning tasks
built from IBT (e.g. Task2Vec [Ach+19]), with empirical
ones (e.g. Taskonomy[Zam+18]);

[Zam+18] Amir R Zamir, Alexander Sax, William Shen, Leonidas ] Guibas, Jitendra Malik, and Silvio Savarese. “Taskonomy: Disentangling task
transfer learning”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018, pp. 3712-3722.
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CONCLUSION

Information Bottleneck Theory,

far from being rigorous and complete,
is an emerging and exciting topic
with a compelling narrative

and many open opportunities.
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