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Semantic Scene Completion

Introduced by Song et al.[107] 

in 2017

Trained a 3D CNN that jointly

deals with both completion

and semantic segmentation

[107] Song, S., Yu, F., Zeng, A., Chang, A.X., Savva, M., and Funkhouser, T.: Semantic Scene Completion from a Single Depth Image. In Proceedings of IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR), Honolulu, Hawaii, July 21-26, pp. 190–198, Piscataway, NJ, July 2017. IEEE. 2, 3, 4, 18, 45, 46, 47, 51, 52, 53, 64, 68, 70
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[70] Liu, S., HU, Y., Zeng, Y., Tang, Q., Jin, B., Han, Y., and Li, X.: See and think: Disentangling semantic scene completion. In Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., 
and Garnett, R. (eds.): Procedings of Conference on Neural Information Processing Systems 31 (NIPS), pp. 263–274, Reed Hook, NY, 2018. Curran Associates, Inc. 
http://papers.nips.cc/paper/7310-see-and-think-disentangling-semantic-scene-completion. 2, 4, 45, 47, 52, 53, 58, 59

Qualitative results on NYUv2 dataset from Liu et al. [70]

Problem Statement
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Problem 
Statement

• Two main deficiencies of current 

approaches:

• the RGB part of the RGB-D image is not 

completely explored;

• they are limited to the restricted FOV of depth 

sensors like Kinect
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Objectives
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2D Domain

• to assess the benefits of domain adaptation 
techniques in the context of image 
segmentation

3D Domain

• to propose and evaluate a new SSC model that 
uses the RGB information present n RGB-D 
images

360o 3D

• to propose and evaluate a solution to perform 
360o SSC

New tools and models that could push SSC solutions 
towards a complete understating of the whole indoor 
scene
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Fully Convolutional 
Networks, Domain 

Adaptation and 
Semantic

Segmentation
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Fully Convolutional 
Networks, Domain 

Adaptation and 
Semantic

Segmentation

Why work on 2D?

• Work on 3D is hard

• Less previous works to compare!

• Start to explore domain adaptation and segmentation in an 

easier domain

14

[53] Kakumanu, P., Makrogiannis, S., and Bourbakis, N.: A survey of skin-color modeling and detection methods. Pattern Recognition, 40(3):1106 – 1122, 2007, 
ISSN 0031-3203. 27
[12] Brancati, N., Pietro, G.D., Frucci, M., and Gallo, L.: Human skin detection through correlation rules between the YCb an d YCr subspaces based on dynamic 
color clustering. Computer Vision and Image Understanding, 155:33 – 42, 2017, ISSN 1077-3142.
27, 28, 35, 36, 39, 42
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Fully Convolutional 
Networks, Domain 

Adaptation and 
Semantic

Segmentation

• Why the skin segmentation application?

• Research field where some criticisms regarding the use of 

CNNs/FCNs are made:

• the need for large training datasets [53]

• the specificity or lack of generalization of neural nets

• long prediction time [12]

• We wanted to try to refute those criticisms

15

[53] Kakumanu, P., Makrogiannis, S., and Bourbakis, N.: A survey of skin-color modeling and detection methods. Pattern Recognition, 40(3):1106 – 1122, 2007, 
ISSN 0031-3203. 27
[12] Brancati, N., Pietro, G.D., Frucci, M., and Gallo, L.: Human skin detection through correlation rules between the YCb an d YCr subspaces based on dynamic 
color clustering. Computer Vision and Image Understanding, 155:33 – 42, 2017, ISSN 1077-3142.
27, 28, 35, 36, 39, 42
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Previous Works
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[12] Brancati, N., Pietro, G.D., Frucci, M., and Gallo, L.: Human skin detection through correlation rules between the YCb andYCr subspaces based on dynamic 
color clustering. Computer Vision and Image Understanding, 155:33 – 42, 2017, ISSN 1077-3142.
27, 28, 35, 36, 39, 42
[33] Faria, R.A.D. and Hirata Jr., R.: Combined correlation rules to detect skin based on dynamic color clustering. In Proceedings of the 13th International Joint 
Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISAPP), vol. 5, pp. 309–316. INSTICC, SciTePress, 2018, ISBN 978-989-
758-290-5. 28, 35, 36
[49] Huynh-Thu, Q., Meguro, M., and Kaneko, M.: Skin-Color-Based Image Segmentation and Its Application in Face Detection. In MVA, pp. 48–51, 2002. 27, 39
[74] Lumini, A. and Nanni, L.: Fair comparison of skin detection approaches on publicly available datasets. Techn. rep., Cornell University Library, CoRR/cs.CV, 
August 2019. arXiv:1802.02531 (v3). 28, 43
[100] Shrivastava, V.K., Londhe, N.D., Sonawane, R.S., and Suri, J.S.: Computer-aided diagnosis of psoriasis skin images with HOS, texture and color features. 
Comput. Methods Prog. Biomed., 126(C):98–109, Apr. 2016, ISSN 0169-2607. 27

Historically, color-based or texture methods were
preferred [49, 100]

Current state-of the-art works still rely on local
approaches:

• Skin-color separation [12, 33]

• Patch-based CNN [74]

The use of domain adaptation methods for this
problem is not common
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Experiments
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In-domain:
• Local CNN vs Holistic FCN

• Comparison to current color-based state-of-the-art

Cross-domain:

• Assessment of 3 simple methods

Fine-tuning Pseudo-label

Combined approach
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Models
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Local, Patch-based CNN

Holistic, u-shaped FCN
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Datasets
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SFA ​[15]
(1,118 images)

Compaq[51]​
(4,670 images)

Pratheepan ​[117]
(78 images)

VPU​[93]
(290 images)



Supervised Training 
vs

Domain Adaptation
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Comparison of source only vs. domain adaptation combined approach in 
the Compaq→Pratheepan scenario

Sup. 
Training

Sup. 
Training

D.A. 
combined

D.A. 
combined
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Conclusions

Refuted criticisms regarding
the use of Deep Convolu-

tional Networks for skin
segmentation

21

• Color or texture separation may suffice:
• Our two CNN approaches performed much better 

than the color-based state-of-the-art

• CNNs are slow:
• Our U-Net inference time was enough for real-

time applications

• CNNs need too much data to generalize:
• With no labeled data -> 60% improvement
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Publication
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[30] Dourado, A., Guth, F., de Campos, T.E., and Weigang, L.: Domain adaptation for holistic skin detection. 
Tech. Rep. arXiv:1903.0969, Cornell University Library, 2019. http://arxiv.org/abs/1903.06969. 6, 26

*Submitted to International Journal of Pattern Recognition and Artificial 
Intelligence (Capes Qualis B1)

Domain Adaptation for Holistic
Skin Detection
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Using RGB Edges to 
improve Semantic 
Scene Completion 

from RGB-D Images
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Previous Works
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Depth maps only

• SSCNET: Song et al. [107]
• Seminal paper

• Proposed F-TSDF encoding

• Introduced SUNCG Dataset

[107] Song, S., Yu, F., Zeng, A., Chang, A.X., Savva, M., and Funkhouser, T.: Semantic Scene Completion from a Single Depth 
Image. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, Hawaii, July 21-
26, pp. 190–198, Piscataway, NJ, July 2017. IEEE. 2, 3, 4, 18, 45, 46, 47, 51, 52, 53, 64, 68, 70
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Previous Works

25

Depth maps only

• Guo and Tong [40]:
• 2D features projected to 3D

[40] Guo, Y. and Tong, X.: View-Volume Network for Semantic Scene Completion from a Single Depth Image. In Proceedings of 
the Twenty-Seventh International Joint Conference on Artificial Intelligence, pp. 726–732, Stockholm, Sweden,
July 2018. International Joint Conferences on Artificial Intelligence Organization, ISBN 978-0-9992411-2-7. 
https://doi.org/10.24963/ijcai.2018/101. 2, 4, 18, 46, 52, 53

https://doi.org/10.24963/ijcai.2018/101
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Previous Works

26

Depth maps only

• Guo and Tong [40]:
• 2D features projected to 3D

[40] Guo, Y. and Tong, X.: View-Volume Network for Semantic Scene Completion from a Single Depth Image. In Proceedings of 
the Twenty-Seventh International Joint Conference on Artificial Intelligence, pp. 726–732, Stockholm, Sweden,
July 2018. International Joint Conferences on Artificial Intelligence Organization, ISBN 978-0-9992411-2-7. 
https://doi.org/10.24963/ijcai.2018/101. 2, 4, 18, 46, 52, 53

Neglects the RGB 
channels from the

input data 

https://doi.org/10.24963/ijcai.2018/101
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Previous Works
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Depth maps plus RGB

• Guedes et al.[38]

[38] Guedes, A.B.S., de Campos, T.E., and Hilton, A.: Semantic scene completion combining colour and depth: preliminary 
experiments. In ICCV workshop on 3D Reconstruction Meets Semantics (3DRMS), Venice, Italy, October 2017.
Event webpage: http://trimbot2020.webhosting.rug.nl/events/events-2017/3drms/. Also published at arXiv:1802.04735. 4, 45, 
46, 47, 52, 53
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Previous Works

28

Depth maps plus RGB

• Guedes et al.[38]

[38] Guedes, A.B.S., de Campos, T.E., and Hilton, A.: Semantic scene completion combining colour and depth: preliminary 
experiments. In ICCV workshop on 3D Reconstruction Meets Semantics (3DRMS), Venice, Italy, October 2017.
Event webpage: http://trimbot2020.webhosting.rug.nl/events/events-2017/3drms/. Also published at arXiv:1802.04735. 4, 45, 
46, 47, 52, 53

Suffers from RGB 
data sparsity after 
projection to 3D
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Previous Works
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Depth map plus 2D segmentation

• Two stream 3D semantic scene completion: Garbade et 
al.[36]

[36] Garbade, M., Sawatzky, J., Richard, A., and Gall, J.: Two stream 3D semantic scene completion. Tech. Rep. 
arXiv:1804.03550, Cornell University Library, 2018. http://arxiv.org/abs/1804.03550. 4, 45, 47, 52, 53
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Previous Works
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Depth map plus 2D segmentation

• TNetFusion: Liu et al.[70]

[70] Liu, S., HU, Y., Zeng, Y., Tang, Q., Jin, B., Han, Y., and Li, X.: See and think: Disentangling semantic scene completion. In 
Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Garnett, R. (eds.): Procedings of Conference on Neural 
Information Processing Systems 31 (NIPS), pp. 263–274, Reed Hook, NY, 2018. Curran Associates, Inc. 
http://papers.nips.cc/paper/7310-see-and-think-disentangling-semantic-scene-completion. 2, 4, 45, 47, 52, 53, 58, 59
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Previous Works

31

Depth map plus 2D segmentation

• TNetFusion: Liu et al.[70]

[70] Liu, S., HU, Y., Zeng, Y., Tang, Q., Jin, B., Han, Y., and Li, X.: See and think: Disentangling semantic scene completion. In 
Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Garnett, R. (eds.): Procedings of Conference on Neural 
Information Processing Systems 31 (NIPS), pp. 263–274, Reed Hook, NY, 2018. Curran Associates, Inc. 
http://papers.nips.cc/paper/7310-see-and-think-disentangling-semantic-scene-completion. 2, 4, 45, 47, 52, 53, 58, 59

Requires a complex 
two step training 

procedure
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TSDF
vs

F-TSDF
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TSDF

• TSDF: Truncated Signed Distance Function
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TSDF
vs

F-TSDF
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• F-TSDF: Flipped Truncated Signed Distance Function 

F-TSDF

F-TSDF = sign(TSDF) · (1-|TSDF|)
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F-TSDF and
the RGB 
Volume

34

• It is possible to apply F-TSDF to the occupancy volume

• However, RGB data is not binary!

F-TSDF
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Our Approach: 
EdgeNet

35

• We extract information from RGB data using Canny Edge 
detector before F-TSDF
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Our implementation
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• Offline F-TSDF calculation using portable 
C++ CUDA code

• We provide a software interface between 
CUDA and Python

• Preprocessing code is independent from 
the deep learning framework
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Network Architecture

240x144x240

240x144x240
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Network Architecture
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Network Architecture - Fusion Schemes
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Network Architecture - Fusion Schemes
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Network Architecture - Fusion Schemes
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Network Architecture - Fusion Schemes
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Datasets
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• SUNCG*

• NYUDv2**

*Song et al.[107]

**Silberman et al.[102]
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Training Time
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• Ours

• SUNCG: 4 days

• NYU: 6 hours

• SSCNET

• SUNCG: 7 days

• NYU: 30 hours
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Quantitative Results
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• New state-of-the-art result on SUNCG

• All new aspects of our solution contributed to the 
improvement

• Middle Fusion and Late Fusion schemes presented 
similar results on SUNCG

• Middle Fusion presented better results on NYUDV2



Image

Ground Truth SSCNet EdgeNet-MF

Qualitative Results
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Image

Ground Truth SSCNet EdgeNet-MF

Higher overall accuracy

Qualitative Results

47



Image

Ground Truth SSCNet EdgeNet-MF

Hard-to-detect classes

Qualitative Results
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Image

Ground Truth SSCNet EdgeNet-MF

NYU Ground Truth errors

Qualitative Results
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Conclusions
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• A new end-to-end network architecture

• A new RGB enconding strategy

• Visually perceptible improvements

• Improvement over the state-of-the-art result 
on SUNCG

• We surpased other end-to-end approaches on 
NYUv2

• An efficient and lightweight training pipeline for 
the task
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Publication
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[29] Dourado, A., de Campos, T.E., Kim, H., and Hilton, A.: EdgeNet: Semantic scene completion from RGB-D 
images. Tech. Rep. arXiv:1908.02893, Cornell University Library, 2019. http://arxiv.org/abs/1908.02893. 6, 
44, 68

*Accepted for publication in the proceedings of the 25th International Conference on 
Pattern Recognition (ICPR2020) (Capes Qualis A2)

EdgeNet: Sematic Scene
Completion from a Single RGB-D 

Image
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Extending 
Semantic Scene
Completion for 
360O Coverage

52



Regular RGB-D Sensor
Panoramic Image from 
Matterport Camera

53

Current Semantic Scene Completion Limitations



The 3DCNN is trained using SUNCG and
fine-tuned in NYUDV2

This approach allows to use existing large
and diverse RGB-D datasets for training.

In
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le

Our approach
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RGB Image Input Volume Predicted Volume GT
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Results on Stanford 2D-3DS Dataset
GT Pred.

https://p3d.in/ytMnK
https://p3d.in/52pJG
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Experiments on 
Spherical Stereo 

Images
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• Stereo capture using commercial 360O cameras is 
one realistic approach to 360O SSC

• faster compared to Matterport scanning

• depth estimation is subject to errors due to occlusions 
between two camera views and correspondence matching 
errors
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Our approach
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• vertical stereo setup

• Dense stereo matching with spherical 
stereo geometry [56]

• Depth map enhancement procedure:

• Align the scene (Manhattan principle)

• Apply Canny Edge Detector

• RANSAC to fit a plane over coherent 
regions with similar colors

[56] Kim, H. and Hilton, A.: Block world reconstruction from spherical stereo image pairs. Computer Vision and Image 
Understanding (CVIU), 139(C):104–121, Oct. 2015, ISSN 1077-3142. http://dx.doi.org/10.1016/j.cviu.2015.04.001. 17, 69



RGB Image Input Volume Predicted VolumeOriginal Depth Map Enhanced Depth Map

Results on Spherical Images

58
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Conclusions
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• We introduced the 360o Semantic Scene 
Completion

• Works with high-end sensors or off-the-shelf 
360o cameras

• Segmentation accuracy equivalent to limited 
view solutions

• High levels of completion of occluded regions
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Publication

60

[31] Dourado, A., Kim, H., de Campos, T.E., and Hilton, A.: Semantic scene completion from a single 360-degree image and 
depth map. In Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics 
Theory and Applications (VISIGRAPP 2020), vol. 5: VISAPP, pp. 36–46. 7, 61

*Published in the proceedings of the 15th International Conference on Computer 
Vision Theory and Applications (VISAPP2020) (Qualis A1)

Sematic Scene Completion from a 
Single 360O Image and Depth

Map
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Application Paper
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https://www.cvssp.org/hkim/paper/CVST2020/

Immersive Audio-Visual Scene
Reproduction using Semantic

Scene Reconstruction from
360O Cameras

https://www.cvssp.org/hkim/paper/CVST2020/
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Work Plan
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Remaining Activities

63

• Review the most recent works on the subject
• evaluate possible ways to improve EdgeNet 

(Chapter 4)

• Missing experiments:
• try an offline very late fusion approach

• train the 360O solution on Stanford and other 360O

datasets (Chapter 5)

• Try domain adaptation
• from synthetic data

• from NYUDV2

• Consolidate enhanced Chapters 4 and 5 into 
a Journal submission
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Timeline
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Thank you!

aloisio.dourado.bh@gmail.com



Results – ablation study on SUNCG
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Effect of our efficient training pipeline

Results – ablation study on SUNCG
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Effect of our u-shaped architecture, with 3D dilated residial modules

Results – ablation study on SUNCG
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Effect of adding edges

Results – ablation study on SUNCG

69



Effect of adding edges

Results – ablation study on SUNCG
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Effect of different fusion strategies

71

Results on NYU-DV2



Results on NYU-DV2
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Input Partitioning
• Input volume: 

• 480 x 144 x 480 voxels

• Voxel size: 0.02m

• coverage: 9.6 x 2.8 x 9.6 m

• 8 partitions, emulating the field of view of a 
standard RGB-D sensor

• The partitions are taken from the sensor 
position, using a 45o step

• We move the point-of-view 1.7m back from 
the original sensor position, to get more 
overlapped coverage 

Our approach

73



Prediction Ensemble
• Each partition of the input is processed by 

our CNN, generating 8 predicted volumes

• Overlapping areas are ensembled using 
the sum rule

• Each predicted partition size is 60 x 36 x 
60

• The resulting ensembled volume size is 
120 x 36 x 120

Our approach

74
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Results on Stanford 2D-3DS Dataset


