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Presentation
Outline

• Introduction (Chapter 1)

• Motivation

• Problem statement

• Objectives

• Publications

• Background and related concepts (Chapter 2)

• Previous works (Chapter 3)
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Presentation
Outline

• Research steps (Chapters 4 to 8)

• Semantic segmentation, FCN, domain adaptation, data 

augmentation and semi-supervision in 2D 

(Chapter 4)

• First work in 3D: exploiting RGB input with EdgeNet 

(Chapter 5)

• Going further in 3D: adding multiple input modes and data 

augmentation 

(Chapter 6)

• Going even further in 3D: adding semi-supervision 

(Chapter 7)

• Enhancing the field of view: 360 degree Semantic Scene 

Completion

(Chapter 8)

• Conclusion (Chapter 9)
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Applications



Semantic Scene Completion

[107] Song, S., Yu, F., Zeng, A., Chang, A.X., Savva, M., and Funkhouser, T.: Semantic Scene Completion from a Single Depth Image. In Proceedings of IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR), Honolulu, Hawaii, July 21-26, pp. 190–198, Piscataway, NJ, July 2017. IEEE. 2, 3, 4, 18, 45, 46, 47, 51, 52, 53, 64, 68, 70
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[70] Liu, S., HU, Y., Zeng, Y., Tang, Q., Jin, B., Han, Y., and Li, X.: See and think: Disentangling semantic scene completion. In Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., 
and Garnett, R. (eds.): Procedings of Conference on Neural Information Processing Systems 31 (NIPS), pp. 263–274, Reed Hook, NY, 2018. Curran Associates, Inc. 
http://papers.nips.cc/paper/7310-see-and-think-disentangling-semantic-scene-completion. 2, 4, 45, 47, 52, 53, 58, 59

Qualitative results on NYUv2 dataset from Liu et al. [70]
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Problem 
Statement

• Four main deficiencies of the approaches 

available by the time we started our research:

• the RGB part and other modes of the RGB-D images 
are not completely explored;

• techniques widely used in 2D deep CNN training are 
not used;

• available unlabelled data is not used;

• current solutions are limited to the restricted FOV of 
depth sensors
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Objectives

22

2D Domain

• to assess the benefits of domain adaptation, semi-supervision and data 
augmentation in the 2D semantic segmenation context

3D Domain

• to apply current trends on 2D deep CNN training protocols to 3D SSC

• to propose and evaluate new SSC models that fully
exploits the information in the RGB-D images

• to propose and evaluate the benefits of semi-supervised learning

360o 3D
• to propose and evaluate a solution to perform 360o SSC

New tools and models that could push SSC solutions 
towards a complete understating of the whole indoor 
scene
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Publications
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2D Domain

• Domain Adaptation for Holistic Skin Detection: 34th SIBGRAPI 
Conference on Graphics, Patterns and Images (SIBGRAPI 2021)

3D Domain

• EdgeNet:Semantic Scene Completion from RGB-D 
images: International Conference on Pattern Recognition (ICPR 2020)

• Data Augmented 3D Semantic Scene Completion With 2D 
Segmentation Priors: IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV 2022)

360o 3D

• Semantic Scene Completion from a Single 360 degree Image and 
Depth Map: Conference on Computer Vision Theory and Applications 
(VISAPP 2020)

• Immersive audio-visual scene reproduction using semantic scene
reconstruction from 360 cameras: Virtual Reality Journal
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Related Concepts
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Stereo Vision • Stereo Vision in Computer Vision relates 

to the stereo nature of human eyes

30

Human Stereo Vision System 
(Simplified)

Example of a Computer Vision Stereo image and
corresponding dept map

Example of a 
Digital Stereo Camera



31

Epipolar Geometry
and Stereo Vision

31

EpipolarGeometry

Camera Calibration



Image and Scene
Reasoning Evolution
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Image and Scene
Reasoning Evolution

33

Marvin Minsky, Claude Shannon, Ray Solomonoff and other scientists at the
Dartmouth Summer Research Project on Artificial Intelligence. Photo by
Margaret Minsky.

1956 Dartmouth Summer Research Project on Artificial
Intelligence
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Image and Scene
Reasoning Evolution
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1958 Rosenblatt Perceptron
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Image and Scene
Reasoning Evolution

35

1959 MIT AI Lab – Marvin Minsky and Jonh McCarty
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Image and Scene
Reasoning Evolution
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1966 The Summer Vision Project
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Image and Scene
Reasoning Evolution

37

1966 The Summer Vision Project

Logics-based 
approaches 

(Functionalism)
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Image and Scene
Reasoning Evolution

38

38

1986 Backpropagation Learning Algorithm and the
Multilayer Perceptron

Multilayer perceptron for recognizing handwritten digits.
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Image and Scene
Reasoning Evolution
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39

1986 AI Winter
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Image and Scene
Reasoning Evolution
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40

1989 Yann LeCunn Convolutional Networks
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Image and Scene
Reasoning Evolution

41

41

2012 The boom of convolutional networks

AlexNet: ImageNet LSVRC-2010
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Image and Scene
Reasoning Evolution

42

42

2014 Fully Connected for Image Segmentation
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3D Representation: 
Voxel Volume 
Encoding
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3D Representation: 
Voxel Volume 
Encoding
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Lifting from Depth Maps 
to Voxels

RGB Depth Map Voxel
Representation
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3D Representation: 
Voxel Volume 
Encoding

45

Truncated Signed
Distance Function (TSDF)
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Domain Adaptation

46

Adapt
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Related Works

47

2D RGB-D Semantic Segmentation Partial 3D Scene Reasoning from RGB-D

3D Semantic Scene Completion 360 degree Scene Understanding
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Semantic Scene
Completion
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RGB-D Input

Output
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The Seminal Work
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Semantic Scene
Completion

50

The Seminal Work

Dilated Convolutions to Enhance Receptive Field

Illustration of a 2D CNN’s Receptive Field

Dilated 3D Convolution Kernels
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Semantic Scene
Completion
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The Seminal Work

Better 3D volume encoding

Original TSDF Proposed F-TSDF
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The Seminal Work

Training on synthetic data
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Semantic Scene
Completion

53

SSC Prior Works



54

Semantic Scene
Completion

54

SSC Prior Works

• Depth maps only



55

Semantic Scene
Completion

55

SSC Prior Works

• Depth maps only

• Depth maps plus RGB



56

Semantic Scene
Completion
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SSC Prior Works

• Depth maps only

• Depth maps plus RGB

• Depth maps plus 2D Segmentation
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360° Scene
Understanding

57



58

Datasets
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• NYUD v2

• NYUCAD

• SUNCG
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Fully Convolutional 
Networks, Domain 

Adaptation and 
Semantic

Segmentation
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Fully Convolutional 
Networks, Domain 

Adaptation and 
Semantic

Segmentation

Why work on 2D?

• Work on 3D is hard

• Start to explore domain adaptation and segmentation in an 

easier domain

60

[53] Kakumanu, P., Makrogiannis, S., and Bourbakis, N.: A survey of skin-color modeling and detection methods. Pattern Recognition, 40(3):1106 – 1122, 2007, 
ISSN 0031-3203. 27
[12] Brancati, N., Pietro, G.D., Frucci, M., and Gallo, L.: Human skin detection through correlation rules between the YCb an d YCr subspaces based on dynamic 
color clustering. Computer Vision and Image Understanding, 155:33 – 42, 2017, ISSN 1077-3142.
27, 28, 35, 36, 39, 42
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Fully Convolutional 
Networks, Domain 

Adaptation and 
Semantic

Segmentation

• Why the skin segmentation application?

• Research field where some criticisms regarding the use of 

CNNs/FCNs are made:

• the need for large training datasets [53]

• the specificity or lack of generalization of neural nets

• long prediction time [12]

• We wanted to try to refute those criticisms

61

[53] Kakumanu, P., Makrogiannis, S., and Bourbakis, N.: A survey of skin-color modeling and detection methods. Pattern Recognition, 40(3):1106 – 1122, 2007, 
ISSN 0031-3203. 27
[12] Brancati, N., Pietro, G.D., Frucci, M., and Gallo, L.: Human skin detection through correlation rules between the YCb an d YCr subspaces based on dynamic 
color clustering. Computer Vision and Image Understanding, 155:33 – 42, 2017, ISSN 1077-3142.
27, 28, 35, 36, 39, 42
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Previous Works

62

Historically, color-based or texture methods were
Preferred

Current state-of the-art works still rely on local
approaches:

• Skin-color separation

• Patch-based CNN

The use of domain adaptation methods for this
problem is not common
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Experiments

63

In-domain:
• Local CNN vs Holistic FCN

• Comparison to current color-based state-of-the-art

Cross-domain:

• Assessment of the gains of 3 simple methods
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Datasets

64

SFA [15]
(1,118 images)

Compaq[51]
(4,670 images)

Pratheepan [117]
(78 images)

VPU[93]
(290 images)
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Models
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Local, Patch-based CNN

Holistic, u-shaped FCN



Domain adaptation
approaches

66

Inductive Transfer Learning by fine-tuning parameters of a model to a new 
domain



Domain adaptation
approaches

67

Semi-supervised and unsupervised Domain Adaptation by cross-domain 
pseudo-labeling



Domain adaptation
approaches

68

Combined transfer learning and domain adaptation approach



Domain adaptation
qualitative results

69

Domain adaptation from Compaq to SFA using no real labels from target



Supervised training 
vs

domain adaptation

70

Comparison of source only vs. domain adaptation combined approach in 
the Compaq→Pratheepan scenario

Sup. 
Training

Sup. 
Training

D.A. 
combined

D.A. 
combined
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Chapter 4 Summary

71

Refuted criticisms regarding the use of Deep Convolutional
Networks for skin segmentation

• Color or texture separation may suffice:
• Our two CNN approaches performed much better than the color-

based state-of-the-art

• CNNs are slow:
• Our U-Net inference time was enough for real-time applications

• CNNs need too much data to generalize:
• With no labeled data -> 60% improvement
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Publication

72

Published in the 34th SIBGRAPI Conference on Graphics, Patterns and Images 
(SIBGRAPI 2021)

Domain Adaptation for Holistic
Skin Detection



C
h

ap
te

r
5

73

Using RGB Edges to 
improve Semantic 
Scene Completion 

from RGB-D Images

73
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Our Approach: 
EdgeNet

74

• We extract information from RGB data using image Canny 
Edge detector
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Our implementation

75

• Offline F-TSDF calculation using portable 
C++ CUDA code

• We provide a software interface between 
CUDA and Python

• Preprocessing code is independent from 
the deep learning framework
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Network Architecture
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Network Architecture
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Network Architecture - Fusion Schemes
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Network Architecture - Fusion Schemes
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Training Time

81

• Ours

• SUNCG: 4 days

• NYU: 6 hours

• SSCNET

• SUNCG: 7 days

• NYU: 30 hours
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Quantitative Results

82

• New state-of-the-art result on SUNCG

• All new aspects of our solution contributed to the 
improvement

• Middle Fusion and Late Fusion schemes presented 
similar results



Image

Ground Truth SSCNet EdgeNet-MF

Qualitative Results
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Image

Ground Truth SSCNet EdgeNet-MF

Higher overall accuracy

Qualitative Results

84



Image

Ground Truth SSCNet EdgeNet-MF

Hard-to-detect classes

Qualitative Results
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Image

Ground Truth SSCNet EdgeNet-MF

NYU Ground Truth errors

Qualitative Results
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Chapter 5 Summary

87

Contributions

• A new end-to-end network architecture

• A new RGB encoding strategy

• Visually perceptible improvements in 3D

• Improvement over the state-of-the-art result 
on SUNCG

• We surpased other end-to-end approaches on 
NYUv2

• An efficient and lightweight training pipeline for 
the task
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Publication

88

Published in the proceedings of the 25th International Conference on Pattern 
Recognition (ICPR2020)

EdgeNet: Semantic Scene
Completion from a Single RGB-D 

Image
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Multimodal 3D SSC 
with 2D

Segmentation Priors
and Data

Augmentation

89



Proposed Solution

SPAwN: Segmentation 
Priors Aware Network
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Two 
Hypothesis

The use of 2D predicted probabilities instead of inner segmentation features

SPAwN: Segmentation 
Priors Aware Network



Proposed Solution

Two 
Hypothesis

The use of 2D predicted probabilities instead of inner segmentation features

The use 3D Data Augmentation SPAwN: Segmentation 
Priors Aware Network



Proposed Solution

BN-DDR: Batch-normalized 
Dimensional Decomposition 
Residual Block



Proposed Solution: Second Hypotesis

3D Data Augmentation
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Y X
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X - Axis Flipping
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Proposed Solution: Second Hypotesis

3D Data Augmentation – Base 
Transformations

Y X

Z
X ↔ Z axes 

swapping



Proposed Solution: Second Hypotesis

3D Data Augmentation – All 
augmented volumes generated 
from a single scene
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Ablation Study
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Comparison to the State-of-the-Art
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Comparison to the State-of-the-Art



Qualitative Results
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Chapter 6 Summary

104

Contributions:

• SPAwN: novel 3D SSC network that explicitly 
fuses semantic priors with high-resolution 
structural information from depth maps.

• BN-DDR: batch normalized DDR module with 
higher discrimination power than its 
predecessors

• 3D Data Augmentation: mode and resolution 
agnostic strategy that may be applied to other 
SSC solutions to reduce overfitting
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Chapter 6 Summary

105

Results

• SPAwN alone consistently suparssed all 
previous straightforward solutions:

• All evaluated datasets

• Multiple training scenarios

• SPAwN when combined with our Data 
Augmentation strategy presented unprecedent 
levels of SCC scores achieving a boost of 19.8% 
(10.9 p.p.) on NYUCAD
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Publication

106

Published in the proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV 2022)

Data Augmented
3D Semantic Scene Completion

with 2D Segmentation Priors
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Exployting unlabeled
data to enhance SSC 

scores

107



Proposed Solution: 
Semi-Supervision via Segmentation Priors (S3P)



Proposed Solution: 
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Proposed Solution: 
Semi-Supervision via Segmentation Priors (S3P)

Pre-trained
2D FCN

High quality
2D priors

2D-3D 
projection

Unlabeled
data

Semi-sup GT 
generation

Semi-sup
loss



Proposed Solution: 
Semi-Supervision via Segmentation Priors (S3P)
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Ablation Study
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Ablation Study
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Comparison to the State-of-the-Art



Qualitative Results
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Chapter 7 Summary

117

• Remarkable Results

• SPAwN alone had consistently suparssed
previous state-of-the-art:

• All evaluated datasets

• Multiple training scenarios

However,

• SPAwN when combinedwith S3P presented 
unprecedent levels of SCC scores achieving a 
boost of 12.6% (5.2 p.p.) on NYUdV2
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Extending 
Semantic Scene
Completion for 
360O Coverage

118



Regular RGB-D Sensor
Panoramic Image from 
Matterport Camera

119

Current Semantic Scene Completion Limitations



The 3DCNN is trained using SUNCG and
fine-tuned in NYUDV2

This approach allows to use existing large
and diverse RGB-D datasets for training.
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Our approach

120



RGB Image Input Volume Predicted Volume GT

121

Results on Stanford 2D-3DS Dataset
GT Pred.

https://p3d.in/ytMnK
https://p3d.in/52pJG
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Experiments on 
Spherical Stereo 

Images

122



123

Our approach

123

• Depth map enhancement procedure:

• Align the scene (Manhattan principle)

• Apply Canny Edge Detector

• RANSAC to fit a plane over coherent 
regions with similar colours



RGB Image Input Volume Predicted VolumeOriginal Depth Map Enhanced Depth Map

Results on Spherical Images

124
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Chapter 8 Summary

125

• We introduced the 360o Semantic Scene 
Completion

• Works with high-end sensors or off-the-shelf 
360o camerash

• Segmentation accuracy close to limited view 
solutions

• High levels of completion of occluded regions
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Publication 1

126

Published in the proceedings of the 15th International Conference on Computer Vision 
Theory and Applications (VISAPP2020)

Sematic Scene Completion from a 
Single 360O Image and Depth

Map
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Publication 2:
Application Paper

127

https://www.cvssp.org/hkim/paper/CVST2020/

Immersive Audio-Visual Scene
Reproduction using Semantic

Scene Reconstruction from
360O Cameras

https://www.cvssp.org/hkim/paper/CVST2020/
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Conclusion

128
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Research Objectives
Achievement

129

New tools and models that could push SSC solutions 
towards a complete understaging of the whole indoor 
scene

2D Domain

• to assess the benefits of domain adaptation, semi-supervision and data 
augmentation in the 2D semantic segmenation context

3D Domain

• to apply current trends on 2D deep CNN training protocols to 3D SSC

• to propose and evaluate new SSC models that fully
exploits the information in the RGB-D images

• to propose and evaluate the benefits of semi-supervised learning

360o 3D
• to propose and evaluate a solution to perform 360o SSC
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Contributions

130

1. A new Domain Adaptation strategy for skin detection;

2. EdgeNet, a new end-to-end CNN architecture that fuses 
depth and RGB edges;

3. a new 3D volumetric edge representation using F-TSDF;

4. a more efficient end-to-end training pipeline for SSC;

5. SPAwN, a novel lightweight multimodal 3D SSC CNN;

6. BN-DDR, a memory-saving batch-normalized building block 
for 3D CNNs;

7. a novel strategy to apply data augmentation technique for 
3D SSC;

8. S3P, a novel 2D-prior-based semi-supervised training 
approach to the SSC task.
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Publications

131

1. Domain Adaptation for Holistic Skin Detection: proceedings 
of the 34th SIBGRAPI Conference on Graphics, Patterns and 
Images (SIBGRAPI 2021);

2. EdgeNet: Semantic Scene Completion from RGB-
D images: proceedings of the International Conference on 
Pattern Recognition (ICPR 2020);

3. Data Augmented 3D Semantic Scene Completion With 2D 
Segmentation: proceedings of the IEEE/CVF Winter Conference 
on Applications of Computer Vision (WACV 2022)

4. Semantic Scene Completion from a Single 360◦ Image and 
Depth Map: proceedings of the Conference on Computer Vision 
Theory and Applications (VISAPP 2020);

5. Immersive audio-visual scene reproduction using semantic 
scene reconstruction from 360 cameras: Virtual Reality Journal 
(VIRE).

4 high level conferences
1 Journal
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Future Work

132

1. Combining chapter 6 and 7: data augmentation and semi-
supervision combined into a single model;

2. extending S3P to explore large-scale real 3D datasets
without dense 3D labels, but with 2D labels;

3. the resulting model could be used to replace EdgeNet as base 
model for the 360 degree SSC approach.



Thank you!

aloisio.dourado.bh@gmail.com


