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Presentation
Outline

» Research steps (Chapters 4 to 8)

Semantic segmentation, FCN, domain adaptation, data
augmentation and semi-supervision in 2D
(Chapter 4)

First work in 3D: exploiting RGB input with EdgeNet
(Chapter 5)

Going further in 3D: adding multiple input modes and data
augmentation
(Chapter 6)

Going even further in 3D: adding semi-supervision
(Chapter 7)

Enhancing the field of view: 360 degree Semantic Scene
Completion
(Chapter 8)

e Conclusion (Chapter9)
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Semantic Scene Completion
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[107] Song, S., Yu, F, Zeng, A., Chang, A.X., Savva, M., and Funkhouser, T.: Semantic Scene Completion from a Single Depth Image. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Honolulu, Hawaii, July 21-26, pp. 190-198, Piscataway, NJ, July 2017. IEEE. 2, 3, 4, 18, 45, 46, 47, 51, 52, 53, 64, 68, 70



Problem Statement

SATNet
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image ground truth

SSCNet

SATNet )
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Qualitative results on NYUv2 dataset from Liu et al. [70]

[70] Liu, S., HU, Y., Zeng, Y., Tang, Q., Jin, B., Han, Y., and Li, X.: See and think: Disentangling semantic scene completion. In Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N.,
and Garnett, R. (eds.): Procedings of Conference on Neural Information Processing Systems 31 (NIPS), pp. 263—274, Reed Hook, NY, 2018. Curran Associates, Inc.
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Problem| e Four main deficiencies of the approaches
Statement available by the time we started our research:

* the RGB part and other modes of the RGB-D images
are not completely explored;

* techniques widely used in 2D deep CNN training are
not used;

* available unlabelled data is not used;

e current solutions are limited to the restricted FOV of
depth sensors




Objectives

New tools and models that could push SSC solutions
towards a complete understating of the whole indoor

scene

* to assess the benefits of domain adaptation, semi-supervision and data
augmentation in the 2D semantic segmenation context

e to apply current trends on 2D deep CNN training protocols to 3D SSC

e to propose and evaluate new SSC models that fully
exploits the information in the RGB-D images

e to propose and evaluate the benefits of semi-supervised learning

e to propose and evaluate a solution to perform 360°SSC
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Objectives

New tools and models that could push SSC solutions
towards a complete understating of the whole indoor
scene

e to assess the benefits of domain adaptation, semi-supervision and data
: augmentation in the 2D semantic segmenation context
2D Domain

e to apply current trends on 2D deep CNN training protocols to 3D SSC
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2D Domain

e Domain Adaptation for Holistic Skin Detection: 34th SIBGRAPI
Conference on Graphics, Patterns and Images (SIBGRAPI 2021)
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Publications

360°3D
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Stereo Vision| < Stereo Vision in Computer Vision relates
to the stereo nature of human eyes

Human Stereo Vision System Example of a
(Simplified) : Digital Stereo Camera

Example of a Computer Vision Stereo image and
corresponding dept map

e T T T R ——

(a) Left view (b) Right view (c) Depth map 30




Epipolar Geometry
and Stereo Vision

Epipolar Geometry

Camera Calibration

s

. .
. -
. .

Left Image Plane
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Image and Scene
Reasoning Evolution




Image and Scene
Reasoning Evolution
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Marvin Minsky, Claude Shannon, Ray Solomonoff and other scientists at the
Dartmouth Summer Research Project on Artificial Intelligence. Photo by

Margaret Minsky.

Dartmouth Summer Research Project on Artificial
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Image and Scene
Reasoning Evolution

1958 Rosenblatt Perceptron

out(t)




Image and Scene
Reasoning Evolution

1959 MIT Al Lab — Marvin Minsky and Jonh McCarty
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Image and Scene
Reasoning Evolution

9 66 The Summer Vision Project

MASSACHUSEITS INSTITUTE OF TECHNOLOGY
PEOJECT MAC

Artificial Imtelligence Group July 7, 1966
Vigion Meuo., Ho. 100,

THE SUMMER VISION PROJECT

Seymour Papert

The summer vision 'Pt'{,!lleEE is an aAtcempt ©O usSe oOUY SUmmEr workers

effectively in the construction of a significant part of a wisual system.

The particular task was chogen pﬁrt%? bagaiae ir can be segmented imto
gub-problems which will allow individuals to work independently and yet
participate in the construction of a aystem complex enmough to be a real

landmark in the development of "pattern recognitiom!l.
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Reasoning Evolution

19 66 The Summer Vision Project

MASSACHUSEITS INSTITUTE OF TECHNOLOGY
PEOJECT MAC

Artificial Imtelligence Group July 7, 1966

Vision Memo., Ho.o 100,

Logics-based
approaches
(Functionalism)

THE SUMMER VISION PROJECT

Sevmour Papert

The summer vision projeet 1s an attempt Co UsSe oUr SUSMEr WOLkers
effectively in the construction of a significant part of a wisual system.
The particular task was chogen pafL{$ becauee 1t can be segmented imto
gub=problems which will allow individuals to work independently and yer
participate in the censtruction of & avstem complex enmough to be a real

landmark in the development of "pattern recognitiom!l.




Image a nd Scene Backpropagation Learning Algorithm and the

Reasoning Evolution 1986 Multilayer Perceptron

10
e classes

D sese = O

n input layer  hidden layers output layer

Multilayer perceptron for recognizing handwritten digits.




Image and Scene
Reasoning Evolution

1986 Al Winter
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Image and Scene
Reasoning Evolution

1989 Yann LeCunn Convolutional Networks
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Image and Scene
Reasoning Evolution
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Image and Scene
Reasoning Evolution
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3D Representation:
Voxel Volume
Encoding
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3D Representation:
Voxel Volume
Encoding

Lifting from Depth Maps
to Voxels

Depth Map

Voxel
Representation
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3D Representation:
Voxel Volume
Encoding

Truncated Signed
Distance Function (TSDF)
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Domain Adaptation

46



Related Works
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3D Semantic Scene Completion

360 degree Scene Understanding
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Semantic Scene
Completion

The Seminal Work

Semantic Scene Completion from a Single Depth Image

Shuran Song  Fisher Yu

Andy Zeng Angel X. Chang Manolis Savva Thomas Funkhouser

Princeton University

http://sscnet.cs.princeton.edui

Abstract

This paper focuses on semantic scene completion, a task
for producing a complete 3D voxel representation of vol-
umetric occupancy and semantic labels for a scene from
a single-view depth map observation. Previous work has
considered scene completion and semantic labeling of depth
maps separately. However, we observe that these two prob-
lems are tightly intertwined. To leverage the coupled na-
ture of these two tasks, we introduce the semantic scene
completion network (SSCNet), an end-to-end 3D convolu-
tional network that takes a single depth image as input and
simultaneously outputs occupancy and semantic labels for
all voxels in the camera view frustum. Our network uses a
dilation-based 3D context module to efficiently expand the
receptive field and enable 3D context learning. To train our
network, we construct SUNCG - a manually created large-
scale dataset of synthetic 3D scenes with dense volumet-
ric annotations. Our experiments demonstrate that the joint
model outperforms methods addressing each task in isola-
tion and outperforms alternative approaches on the seman-
tic scene completion task. The dataset and code is available
at http://sscnet.cs.princeton.edu.

% Au\k y 74
(c) output
Figure 1. Semantic scene completion. (a) Input single-view depth

map (b) Visible surface from the depth map; color is for visualiza-
tion only. (c) Semantic scene completion result: our model jointly

nradicrte vnliimatric ncernnancy and nhiact rateanriee far srarh nf
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Semantic Scene
Completion

The Seminal Work

Dilated Convolutions to Enhance Receptive Field
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Semantic Scene
Completion

The Seminal Work

Better 3D volume encoding
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Semantic Scene
Completion

The Seminal Work

Training on synthetic data

SUNCG Synthetic Scenes

Generated Views
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Semantic Scene
Completion

SSC Prior Works




Semantic Scene * Depth maps only
Completion

SSC Prior Works




Semantic Scene * Depth maps only

Completion * Depth maps plus RGB

SSC Prior Works




Semantic Scene
Completion

SSC Prior Works

* Dept
* Dept
* Dept

N maps only

h maps plus RGB

N maps plus 2D Segmentation



360° Scene
Understanding
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Datasets e NYUD v2

* NYUCAD
* SUNCG




Fully Convolutional
Networks, Domain
Adaptation and
Semantic
Segmentation

Chapter 4




FuIIy Convolutionall Why workon2D?

Networks, Domain e Work on 3D is hard
Ada ptation and * Start to explore domain adaptation and segmentationin an

) easier domain
Semantic
Segmentation

[53] Kakumanu, P., Makrogiannis, S.,and Bourbakis, N.: A survey of skin-color modeling and detection methods. Pattern Recognition,40(3):1106 —1122, 2007,
ISSN 0031-3203.27

[12] Brancati, N., Pietro, G.D., Frucci, M., and Gallo, L.: Human skin detection through correlation rules between the YCb and YCr subspaces based on dynamic
color clustering. Computer Vision and Image Understanding, 155:33 —42, 2017, ISSN 1077-3142.

27,28,35,36,39,42




FuIIy Convolutional| < Why the skin segmentation application?
NetworkS, Domain * Research field where some criticisms regarding the use of

Adaptation and CNNs/FCNs are made:
S . * the need for large training datasets [53]
€ma ﬂtIC * the specificity or lack of generalization of neural nets
Segmeﬂtatlon * long prediction time [12]

 We wanted to try to refute those criticisms

[53] Kakumanu, P., Makrogiannis, S.,and Bourbakis, N.: A survey of skin-color modeling and detection methods. Pattern Recognition,40(3):1106 —1122, 2007,
ISSN 0031-3203.27

[12] Brancati, N., Pietro, G.D., Frucci, M., and Gallo, L.: Human skin detection through correlation rules between the YCb and YCr subspaces based on dynamic
color clustering. Computer Vision and Image Understanding, 155:33 —42, 2017, ISSN 1077-3142.

27,28,35,36,39,42




Previous Works Historically, color-based or texture methods were
Preferred

Current state-of the-art works still rely on local

approaches:
» Skin-color separation
e Patch-based CNN

The use of domain adaptation methods for this
problem is not common




Experiments| In-domain:
e Local CNN vs Holistic FCN

* Comparison to current color-based state-of-the-art

Cross-domain:

* Assessment of the gains of 3 simple methods




Datasets

SFA[15]
(1,118 images)

Pratheepan[117]
(78 images)

Compaq[51]
(4,670 images)

VPU[93]
(290 images)
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Models

Holistic, u-shaped FCN

Local, Patch-based CNN
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Domain adaptation
approaches

- Train - Train
Source | ——p(Model “A” Target | ——p Model “B”
Dataset Dataset

/\

__ Initialize !
Weights f===========s=s=s=s===-= *

Inductive Transfer Learning by fine-tuning parameters of a model to a new
domain




Domain adaptation
approaches
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Domain adaptation
approaches
D Train Q
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Domain adaptation
gualitative results

Image GT Source-0Only  Pseudo Combined

f—score: 0.92 [f—score: 0.93 |f—score: 0.94

par g - - -

f—score: 0.71 [f—score: 0.92 |f—score: 0.93

3
jﬂ

Domain adaptation from Compaq to SFA using no real labels from target




Supervised training
VS
domain adaptation

Sup.
Training

D.A.
combined

D.A.
combined

Comparison of source only vs. domain adaptation combined approachin

Image GT
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¥,

f—score: 0.82

' ]
LA

the Compag—>Pratheepan scenario

70



Chapter 4 Summary| Refuted criticisms regarding the use of Deep Convolutional
Networks for skin segmentation

* Color or texture separation may suffice:

e Our two CNN approaches performed much better than the color-
based state-of-the-art

* CNNs are slow:
e Our U-Net inference time was enough for real-time applications

* CNNs need too much data to generalize:
* With no labeled data -> 60% improvement




Publication

Domain Adaptation for Holistic
Skin Detection

Domain Adaptation for Holistic Skin Detection

Aloisio Dourado

puter Science,
Brasilia, DF, -

rado_bhid

ersity of Brasilia
9, Brazi

mail_eom

alwizio_ dow

Frederico Guth

Teafila de Campos
ipos & oxfords

bt

mni. org

eodecampos

Li Weigang

hitp:

Human skin detection in images is a widely studied topic of Computer Vision for which
it is commonly accepted that analysis of pixel color or local patches may suffice. This
is because skin
small chromatic variation among different samples. However, we found that there are

ans appear to be relatively uniform and many argue that there is a

strong biases in the datasets commonly used to train or tune skin detection methods.
Furthermore, the lack of contextual information may hinder the performance of local

approaches. In this paper we present a comprehensive evaluation of holistic and lo-

cal Convolutional Neural Network (CNN) approaches on in-domain and cross-domain

experiments and compare with state-of-the-art pixel-based approaches. We alsa pro-

pase a combination of inductive transfer learning and unsupervised domain adaptation

which are evaluated on different domains under several amounts of labelled

methods,

data availability. We show a clear superiority of NN over pixel-based approaches even
provide exper-

without labelled training samples on the target domain. Furthermore, w

imental support for the counter-intuitive superiority of holistic over local approaches for

human skin detection.

Keywords: Domain Adaptation, Skin segmentation, €3

1. Introduction

Human skin detection is the task of identifying which pi of an image corre-

spond to skin. The segmentation of skin regions in images &

as several application:

video surveillance, people tracking, human computer interaction, face detection and
recognition and gesture detection, among many others.

Before the boom of Convolutional Neural Networks (CNNs). most approaches

Published in the 34th SIBGRAPI Conference on Graphics, Patterns and Images

SIBGRAPI 2021)
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Using RGB Edges to
Improve Semantic
Scene Completion

from RGB-D Images

Chapter 5
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Our Approach:
EdgeNet

* We extract information from RGB data using image Canny
Edge detector
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Our implementation e Offline F-TSDF calculation using portable
C++ CUDA code

* We provide a software interface between
CUDA and Python

* Preprocessing code is independent from
the deep learning framework




Network Architecture
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Network Architecture

~ :
Input K
Depth ~ s
F-TSDFT G
240x144x200 2

240x144x200

-

3 Concat.
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UpConv3D(32,2.2)

-Conv3D(channe|s.size.strides) R

~ ResNet module (channels, size, strides, dilation=1)

.Maxpooling3D(size, strides)

.Dilated ResNet module (channels, size, strides,dilation=2)
Conv3DTranspose(channels, size, strides) 15x9x15
Conv3D(channels, size, strides) + Softmax + Categorical Cross Entropy Loss

UpConvaD(64,2,2)

input

output

BatchNormalization
RelLU
Conv3D(ch,sz,st,dil)
BatchNormalization
RelLU
Conv3D(ch,sz,st,dil)

« ResNet module with optional dilation



Network Architecture - Fusion Schemes

Early Fusion Scheme
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Network Architecture - Fusion Schemes

ch=4 ch=8 E _________________________________________________

ch=32 ch-64 ch=128 gg ch=64
—P — ; Encodlng - Latent . Decoding

.~ Branch ' Features::  Branch
; ch=4ch=8 T e

Edges Input Branch '

Mid Fusion Scheme




Network Architecture - Fusion Schemes

Late Fusion Scheme

Depth

>l |

i ch=4 ch=8
Input Branch'

ch=16 ch=32 §
Enc Branch: c

D

5 ch=128 ﬁ
. Latent Deco ing

=64

Features
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Training Time

* Qurs
 SUNCG: 4 days
e NYU: 6 hours

e SSCNET
 SUNCG: 7 days
e NYU: 30 hours



Quantitative Results * New state-of-the-artresult on SUNCG

* All new aspects of our solution contributedto the
improvement

 Middle Fusion and Late Fusion schemes presented
similar results




Qualitative Results

Ground Truth

SSCNet

EdgeNet-MF
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Qualitative Results

Ground Truth

SSCNet

Higher overall accuracy

EdgeNet-MF
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Qualitative Results

Ground Truth

SSCNet

Hard-to-detect classes

EdgeNet-MF
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Qualitative Results

Ground Truth

SSCNet

NYU Ground Truth errors

EdgeNet-MF
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Chapter 5 Summary| Contributions

* A new end-to-end network architecture
* A new RGB encoding strategy
 Visually perceptible improvementsin 3D

* Improvement over the state-of-the-artresult
on SUNCG

 We surpased other end-to-end approaches on
NYUv2

* An efficient and lightweight training pipeline for
the task
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EdgeNet: Semantic Scene
Completion from a Single RGB-D
Image

EdgeNet: Semantic Scene Completion from a
Single RGB-D Image

Aloisio Dourado, Teofilo Emidio de Campos Hansung Kim, Adnan Hillon
University of Brasilia University of Surrey
Brasilia, Brazil Surrey, UK
aloisio.dourade.bh @ gmail.com, Ldecampos @st-annes.oxon.org (hkim, 2 hilton) @ sur

Abstraci—Semantic scene completion b the task of predic
a complete 3D representation of volumetrie occupancy wi

orresponding semantic labels for a scene from a single point
of view. In this paper, we present EdgsNet,  arw eadeio-
end neural network architecture that fuses information fro:
deuth and RGE, explchly represening RGE ges n 3D spac
Previous works on this task used either depth-only or dep
with eolour by projecting 2D semantic labels generated by
a 2D segme network into the 30 volume, requiring o
two step fraining process. Our EdgeNet representation encodes
colour information in 3D space using edge detection and fipped
truncated signed distance, which improves semantic completh
scores. especially in hard io defect clisses. We achieved state-
- scores on both synthetic and real datusets with o
simpler and a mare computationally efficient training pipeline
than competing approaches.

L. INTRODUCTION

The shility of rcasoning about scenes in 3D is a natural
task for humans, but remains a challenging problem in Com-
puter Vision [1]. Knowing the complete 3D geomerry of a
scene and the semantic lahels of each 3D voxel has many
practical applications. like robotics and autonomous navigation
ve computing and

in indoor environments, surveillance, assis!
augmented reality

available low cost RGB-D sensors generate data
gle viewing position and canaot handle occlusion
amang ohjects in the scene. For instance, in the scene depicted
on.the lef part of Figure 1. parts of the wall. floor and fi
are occluded by the bed. There is also self-occlusion: the
interior of the bed. its sides and its rear surfaces are hidden
by the visible surface.

Given a partial 3D scene model acquired from a single

RGB-D image, the goal of scene completion is to gencraic
a complete 3D volumetric representation where each voxel
is labelled as occupied by some object or free space. For
occupied voxels. the goal of semantic scene completion is 1o
assign a label that indicates to which class of abject it belo
as illustrated on the right part of Figure 1.
Before 2018, most of the work on scene reasoning only
partially addressces this problem. A number of approaches
only infer labels of the visible surfaces [2]. [3], [4], while
athers only consider completing the oceluded pant of the seene,
without semantic labelling [5]. Another line of work focuses
on single ohjects. without the scene context [6].

The term semantic scene completion was introduced by
Song ef al. (7], who showed that scene completion and
semantic labelling are intertwined and training a CNN o

Jointly deals with both tasks can lead to better results. Their

approach only uses depth information. ignoring all information
from RGB channels. Colour information is expected 1o be
useful to distinguish objects that approsimately share the same
plane in the 3D space, and thus, are hard to be distinguished
using only depth. Examples of such instances are flat objects
attached to the wall, such as posters, paintin;
Some types of closed doors and windows are also problematic
for depth-only approaches.

Recent rescarch also explored colour information from on
RGB-D) images to improve semantic scene completion scores.
Some methods project colour information to 3D in a naive
way, leading to & problem of data sparsity in the voxelised
data that is fed o the 3D CNN [8]. while others uses RGB
information 0 train & 2D segmentation network and then
project generated features to 3D, requiring a complex two step
training process [9]. [10]

Our work focuses on enhancing semantic scene segmenta-
tion scores using information from both depeh and colour of
RGB-IY images in an end-to-end manner. In order to address
the RGB data sparsity issue, we introduce a new strategy for
encoding information extracted from RGB image in 3D space.
We also present o new end-to-end 3D CNN architecture to
combine and represent the features from colour and depth.
Comprchensive experiments are conducted 1o cvaluate the
main aspects of the proposed solution. Results show that our
fusion approach can enhance results of depth-only solutions
and that EdgeNet achieves equivalemt performance to current
state-of-the-art fusion spproach. with a much simpler training
protocal.

To summarise, our main contributions are:

peNet, a new end-to-end CNN architecture that fuses
depth, RGB edge information to achieve state-of-the-art
performance in semantic scene completion with a much
simpler approach,

D volumetric edge representation using fipped
signed-distance functions which improves performance
and unifies data agregation for semantic scene completion
from RGBI.

« 2 new

Published in the proceedings of the 25% International Conference on Pattern
Recognition (ICPR2020)
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Proposed Solution
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Proposed Solution

3D data_
augmentation
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Proposed Solution: Second Hypotesis

3D Data Augmentation — Base
Transformations
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Proposed Solution: Second Hypotesis

3D Data Augmentation — Base
Transformations
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Proposed Solution: Second Hypotesis
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Proposed Solution: Second Hypotesis

3D Data Augmentation - All
augmented volumes generated
from a single scene

(a) no transf.

¢

(d) tl and 2

(g) t2 and t3 (h) t1, t2 and t3



Ablation Stud input | DDR |class comp.| SSC
Y modes type | bal. DA \TTDA IoU |mloU

Regular | no [no| no | 555 | 24.5
depth |BN-DDR| no |no| no | 60.8 | 31.8
BN-DDR| yes [no| no | 60.8 | 32.2
d Regular | no |no| no | 609 | 38.6
epth
BN-DDR| no |no| no | 63.0 | 41.0
BN-DDR| yes [no| no | 644 | 42.2
Regular | no |no| no | 61.3 | 39.2
depth |BN-DDR| no |no| no | 634 |41.4
rgb |BN-DDR| yes |no| no | 63.8 | 434
sn BN-DDR| yes |yes| no | 65.7 | 47.7
BN-DDR| yes |yes| yes | 66.2 | 48.0

rgb

oracle test| BN-DDR| yes ([no| no | 76.7 | 67.9

Table 1: Progressive impact of SPAwWN components on
NYUDv2. No pretraining was performed. “sn” means
surface normals, DA means data augmentation and TTDA
means test-time data augmentation.




Comparison to the State-of-the-Art

odel pipeline | scene completion semantic scene completion (IoU, in percentages)
type |prec. rec. IoU |ceil. floor wall win. chair bed sofa table tvs furn. objs. avg.
SISNet-BiSeNet [ ! ] erative 93.3 96.1 89.9 |85.2 90.0 83.7 80.8 60.0 83.5 80.8 68.6 77.3 86.7 70.1 78.8
SISNet-DeepLabv3 [1] 92.6 96.3 89.3 |85.4 90.6 82.6 80.9 62.9 84.5 82.6 71.6 72.6 85.6 69.7 79.0
EdgeNet[ 7] 93.3 90.6 85.1 (97.2 95.3 78.2 57.5, 51.4 80.7 74.1 54.5 52.6 70.3 60.1 70.2
ESSC[34] straight-192.6 90.4 84.5 |96.6 83.7 74.9 59.0 55.1 83.3 78.0 61.5 47.4 73.5 62.9 70.5
CCPNet[36] forward | 98.2 96.8 91.4 [99.2 89.3 76.2 63.3 58.2 86.1 82.6 65.6 53.2 76.8 65.2 74.2
SPAwN (ours) 919 88.7 82.3 |199.3 96.1 84.4 75.1 59.2 81.5 78.1 67.3 80.1 76.3 70.4 78.9

Table 2: Results on SUNCG test set. “Straight-forward” means that training and inference are done in a direct pipeline,
and iterative means that the pipeline has an iterative loop. Our SPAWN semantic scene completion overall results surpass by
far all known previous straight-forward solutions on SUNCG synthetic images, and are comparable to both SISNet models,
even though they have a much higher parameter count and operate with a complext iterative pipeline for both training and
inference. We highlight the best (bold) and second best (underline) results for the straight-forward models.



Comparison to the State-of-the-Art

odel pipeline (rain | SCENE compl. semantic scene completion (IoU, in percentages)
type prec. rec. IoU |ceil. floor wall win. chair bed sofa table tvs furn. objs. avg.
SISNet-BiSeNet|[ | ] iterative| NYU 90.7 84.6 77.8|53.9 93.2 51.3 38.0 38.7 65.0 56.3 37.8 25.9 51.3 36.0 49.8
SISNet-DLabv3[!] 92.1 83.8 78.2|154.7 93.8 53.2 41.9 43.6 66.2 61.4 38.1 29.8 53.9 40.3 524
TS3D[7] straicht- - - 60.0{ 9.7 934 255 21.0 17.4 559 49.2 17.0 27.5 39.4 19.3 34.1
Sketch Aware[” ] forwgard NYU |85.0 81.6 71.3|43.1 93.6 40.5 24.3 30.0 57.1 49.3 29.2 14.3 42.5 28.6 41.1
SPAwN (ours) 82.3 77.2 66.2|41.5 94.3 38.2 30.3 41.0 70.6 57.7 29.7 40.9 49.2 34.6 48.0
TNetFuse[22] 67.3 85.8 60.6|17.3 92.1 28.0 16.6 19.3 57.5 53.8 17.7 18.5 38.4 18.9 344
ForkNet[33] |straight-| NTU | . . 634/36.2 93.8 29.2 18.9 17.7 61.6 52.9 23.3 19.5 45.4 20.0 37.1
CCPNet[ 0] forward |qUNCG| 91.3 92.6 82.4|25.5 98.5 38.8 27.1 27.3 64.8 58.4 21.5 30.1 38.4 23.8 41.3
SPAwN (ours) 81.2 80.4 67.8|44.2 94.2 40.9 33.5 42.5 69.3 58.4 32.4 44.3 53.4 36.3 49.9

Table 3: Results on NYUDV2 test set. SUNCG + NYU means trained on SUNCG and fine-tuned on NYUDv2. Our SPAWN
models hold the best and second-best overall semantic scene completion results for real-world images, on both training
scenarios, when compared to previous straight-forward solutions.



Comparison to the State-of-the-Art

model pipeline (rain scene compl. semantic scene completion (IoU, in percentages)
type prec. rec. IoU [ceil. floor wall win. chair bed sofa table tvs furn. objs. avg.
SISNet-BiSeNet[ | ] terative INYUCAD 942 91.3 86.5|65.6 94.4 67.1 452 57.2 75.5 66.4 50.9 31.1 62.5 42.9 59.9
SISNet-DLabv3[ | ] 94.1 91.2 86.3|63.4 944 67.2 524 59.2 77.9 71.1 58.1 46.2 65.8 48.8 63.5
CCPNet[36] straight- NYUCAD| 91.3 92.6 82.4|56.2 96.6 58.7 35.1 44.8 68.6 65.3 37.6 35.5 53.1 35.2 53.2
SketchAware[?] forward + 90.6 92.2 84.2159.7 94.3 64.3 32.6 51.7 72.0 68.7 45.9 19.0 60.5 38.5 55.2
SPAWN (ours) SUNCG 845 87.8 75.6(65.3 94.7 61.9 36.9 69.6 82.2 72.8 49.1 43.6 63.4 44.4 62.2
SSCNet[ 1] straight- NYUCAD| 754 96.3 73.2|32.5 92.6 40.2 8.9 40.0 60.0 62.5 34.0 94 49.2 26.5 40.0
CCPNet[30] forward + 93.4 91.2 85.1|58.1 95.1 60.5 36.8 47.2 69.3 67.7 39.8 37.6 554 37.6 55.0
SPAWN (ours) SUNCG 863 90.1 78.9(77.6 95.0 68.0 38.1 67.9 82.2 77.1 56.8 50.0 65.7 46.5 65.9

Table 4: Results on NYUDCAD. Our SPAWN models hold the best and second-best overall results on both training scenarios,
when compared to previous straight-forward solutions. When fine-tuned from SUNCG, SPAwWN surpasses both SISNet
models, which are much more complex than ours.



Qualitative Results

M ceil. [ floor [J wall B window [ chair [] bed B table [ tvs [ sofa B furn. [ objects

(a) RGB (b) Visible surface  (c¢) Semantic priors (d) SPAWN (e) SSCNet (f) GT

Figure 5: SPAwN qualitative results on NYUCAD. 2D segmentation priors projected to 3D provide good semantic guidance
while SPAWN complete and refine the predictions, achieving results visually close to perfection. Compared to baseline
SSCNet [ 1], results are much more accurate. (Best viewed in color).



Chapter 6 Summary| Contributions:

* SPAWN: novel 3D SSC network that explicitly
fuses semantic priors with high-resolution
structural information from depth maps.

* BN-DDR: batch normalized DDR module with
higher discrimination power than its
predecessors

e 3D Data Augmentation: mode and resolution
agnostic strategy that may be applied to other
SSC solutions to reduce overfitting




Chapter 6 Summary

Results

* SPAWN alone consistently suparssed all
previous straightforward solutions:
e All evaluated datasets
* Multiple training scenarios

 SPAWN when combined with our Data
Augmentation strategy presented unprecedent
levels of SCC scores achieving a boost of 19.8%
(10.9 p.p.) on NYUCAD
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Data Augmented

3D Semantic Scene Completion

with 2D Segmentation Priors

Data Aug) d 3D S ic Scene C

with 2D Segmentation Priors

P

Aloisio Dourado, Frederico Guth and  Teofilo de Campos

Campus Darcy

Abstract

Semantic scene completion (SSC) is a challenging Com-
puter Vision task with many practical appiications, from
rbotics to assistive computing. lis goal is to infer the 3D
geometry in a field of view of a scene and the semantic la-
bels of voxels, including oceluded regions. In this work, we
present SPAWN, a novel lightweight multimodai 3D deep
that seamlessly fuses structural data from the depth
component of RGB-D images with semantic priors from a
bimuodai 2D segmentation network. A crucial difficalty in
this field is the lack of fully labeled real-worid 3D datasets
which are large enough o train the current data-hmgry
deep 3D CNNs. In 2D computer vision tasks. many data
augmentation strategles have been proposed to improve the
generalization ability of C\Ns. However those appreaches
cannat be directly applied to the RGB-D input and ouspur
volume of SSC solutions. I this paper. we introduce the
use of @ 3D data augmentation strategy that can be applied
to nuiltimodal SSC networks. We validate our contributions
with a comprehensive and reproducible ablation stdy. Our
salution consistently surpasses previous works with a simi-
lar leved of compiexity.

1. Introduction

Reusoning about scenes in 3D is a natural human abil-
ity that remains a challenge for Computer Vision. In the
past, the two most commion scene understanding tusks were
seene completion [ ] and semantic labeling of visible sur-
faces | 1. Notic tertwined tasks
in 2017, Song et al. [11] introduced the Semantic Seene
Completion (SSC) task for simultaneously comple
cluded vosels and inferring their semantic labels and pro-
posed SSCNet, achieving better results than dealing with
these task approaches only used depth
amnels | | The use
]
We present a new approach for explori
from the RGB-D

ng that these are

y. Ear
information, ignoring the RGB ¢l
of color channels was introduced later

information
put (explained in section 3), as shown

rsity of B
sa Norte, Bra

asilia

1, DF - 7

th. [

0910-900, Bra

2 £

inFigure 1. The
bimaodal 2D seg
the depth map’s structural data, The proposed multimodal
3D network, SPAWN, uses 4 new memary-saving butc
normalized dimensional decomposition residual buildi
block (BN-DDR} and ¢an be trained on a single 10Gb GPU
with 2 4 scene mini-hatch

To overcome the limitations imposed by
sizeable real-world datasets, we we the firs
data augmentation for the SSC task. Data a
widely used in the training of 2D deep CNNs |
its goal is 1o reduce overfitting by artificially increasing
variety of sumples in the training dataset usi

solution uses 2D prior probabilities from a

v the lack of

transforma-

tions like Aipping, crapping, rotation and color transforms.
tansformations can ol naively be used in
ike semantic Scene completion because of
the number of dimensions of the input
(2D} and output (3D). In this paper, we propose 1o apply
data augmentation 1o inner 3D volumes of the solution with
three fast 3D transforma e
the main characteristics of the scene. Our proposed data
augmentation approach reduces overittin
precedented levels of semantic conplet
Lo previous works of similar memory footprint and con-
plexity.

We evaluated our contributions with and without pre-
i nthetic data and observed that our method sur-
by far, all previous staie-of-the-art results on both
seenarios. We demonstrate the henefits of the proposed ar-
chitecture and the data augmentation approach separately,
with several experiments in a comprehensive and repro-
ducible ablation study. Regarding the praposed ai
tation scheme, we evaluate it for training (regular data aug-
mentation) and test (tesi-time data augmentation).

Supplementary material provides sdditional graphs and
data reparding all experiments.  All models and traini
cade necessary 1o reproduce our results and the ablation e
periments are publicly available

Our contributions are listed below.

However, thos

1s in voxel space that pres

n when compared

ipmen-

[E—_—

Published in the proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV 2022)
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Proposed Solution:

Semi-Supervision via Segmentation Priors (S3P)
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Ablation Study

input modes DDR class train | SSC
i type balancing | type | IoU
Regular no Sup. | 21.6

depth BN-DDR no Sup. | 28.4
°P BN-DDR yes Sup. 30.1
BN-DDR | yes | S-Sup. | 39.1

Regular no Sup. | 34.9

BN-DDR | 1o Sup. | 38.4

depth+rgb BN-DDR Jes g
BN-DDR | yes | S-Sup. | 43.5

Regular no Sup. | 35.2

BN-DDR no Sup. 392
Aep+TEbSh | gN.DDR | yes Sup. | 41.4
BN-DDR | yes | S-Sup. | 45.1

oracle test BN-DDR yes Sup. | 67.9
BN-DDR| yes | S-Sup.| 679

Table 1: Progressive impact of our contributions on
NYUDv2. No pretraining was performed. “sn” means sur-
face normals. “Sup.” and “S-Sup.” mean supervised and
semi-supervised training respectively.
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Ablation Study
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Figure 5: Effect of the semi-supervised training over
model overfitting and regularization on NYDv2.
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Comparison to the State-of-the-Art

semantic scene completion (IoU, in percentages)

train model ceil. floor wall win. chair bed sofa table tvs furn. objs. avg.
TS3D[6] 9.7 934 255 210 174 559 492 170 275 394 193 34.1
CCPNet[40] 235 963 3577 202 258 614 56.1 18.1 28.1 37.8 20.1 38.5

NYUDv2 | SketchAware[I] |43.1 93.6 40.5 243 300 57.1 493 292 143 425 286 41.1
SPAWN (sup.) 229 948 358 254 332 656 544 200 33.5 442 257 414
SPAWN+S3P (s-sup.) | 35.6 944 37.0 304 368 68.5 589 234 323 47.9 30.6 45.1

TNetFuse[23] 173 921 280 166 193 575 538 177 185 384 189 34.4
SUNCG ForkNet[36] 362 938 292 189 177 616 529 233 195 454 200 37.1
+ CCPNet[40] 255 985 388 27.1 273 648 584 215 30. 384 238 413

NYUDv2 SPAwN (sup.) 315 945 3877 27.0 328 67.6 572 209 30.7 475 272 432
SPAWN+S3P (s-sup.) | 37.5 93.6 378 350 394 719 582 234 297 350.7 342 46.5

Table 3: Results on NYUDV2 test set. The column “train” indicates datasets used for training the models. SUNCG + NYU
means trained on SUNCG and fine-tuned on NYUDv2. Our SPAwWN semi-supervised and supervised models hold the best
and second-best overall semantic scene completion results for real-world images, on both training scenarios.



Qualitative Results
B ceil. [0 floor [ wall B window [ chair [] bed B table tvs

[ sofa B furn. [ objects

(a) RGB (b) Visible surface (c) Semantic priors (d) Prediction (e) GT

Figure 7. SPAWN & S3P qualitative results on NYUCAD. 2D segmentation priors projected to 3D provide good semantic
guidance. However, the resulting volume is incomplete and still presents some errors. SPAWN & S3P together complete and
refine the predictions, and final results are visually close to perfection. (Best viewed in color).



Chapter 7 Summary| ° Remarkable Results

 SPAWN alone had consistently suparssed
previous state-of-the-art:
e All evaluated datasets
* Multiple training scenarios

However,

* SPAWN when combinedwith S3P presented
unprecedent levels of SCC scores achieving a
boost of 12.6% (5.2 p.p.) on NYUdV2




Extending
Semantic Scene
Completion for
360° Coverage

Chapter 8
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Current Semantic Scene Completion Limitations

Regular RGB-D Sensor

Panoramic Image from
Matterport Camera
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Our approach

3DCNN

3DCNN

3DCNN

3DCNN

3DCNN

3DCNN

3DCNN

3DCNN

oo oTToT

The 3DCNN is trained using SUNCG and
fine-tuned in NYUDV2 and diverse RGB-D datasets for training.
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J

\
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This approach allows to use existing large
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GT Pred.

Results on Stanford 2D-3DS Dataset

RGB Image Input Volume Predicted Volume GT

[0 floor [ wall Bl window [ chair B table [ sofa B furn. [J objects 191


https://p3d.in/ytMnK
https://p3d.in/52pJG

Experiments on
Spherical Stereo
Images
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Our approach| * Depth map enhancement procedure:
* Align the scene (Manhattan principle)
* Apply Canny Edge Detector

* RANSAC to fit a plane over coherent
regions with similar colours
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Results on Spherical Images

RGB Image Original Depth Map Enhanced Depth Map Input Volume  Predicted Volume

[0 floor [ wall B window [] chair B table B sofa B furn. [ objects 124



We introduced the 360° Semantic Scene
Completion

Chapter 8 Summary

Works with high-end sensors or off-the-shelf
360° camerash

Segmentation accuracy close to limited view
solutions

High levels of completion of occluded regions




Publication 1

Semantic Scene Completion from a
Single 360-Degree Image and Depth Map

Aloisio Dourado' @, Hansung Kim®©", Teofilo E. de Campos' & and Adrian Hilto

1,
Un

versity of Brasilia, Brasilia, Brazil
v, LK

i, University of Surr

Sematic Scene Completion from a
Si n g I e 3 600 I ma g e an d De p th Koyt S S Coplen, 6 Dege Sene Recmscon, S Unksindg, 60 g S
Map

the seasor in use.
£ an snappropeiate method for dy
ing depth map 1o infer the ocey

one single image is impoetant 1o allow predictions with o
extension b dynanic scene o We evaluated our

s 10 cover the whole sces
single 3640 image with its
L

Our appruach uses on
senantic labels of the whole room.

plicali

method on two 360 1m
and low-suality 360° RGB-
The experiments showed that the propes
with more affordable 360° cameras, whic
sptial audio reproduction. augs

ted reality, assistive computing and robotics.

1 INTRODUCTION completion (Nguyen et al. 2016)

In 2017, a new line of work was introduced, focus-
ing on the complete understanding of the scene: Se-
Scene Completion (SSC) (Song et al., 2017)
the joint prediction of pccupation and seman-
tic Iahels of visible and occluded regions of the scene
The works in this area are mostly based on the use
of Comvolution Neural Networks (CNNs) trained on
both synthetic and real RGB-D data (Garbade et al

Automatic understanding of the complete 3D geome-
try of a indoor scene and the semantics of cach occu-
pied 3D voxel is one of essential problems for many
applications, such as rabotics, surveillance. assistive
computing, augmented reality, immersive spatial au-
dio reproduction and others. After years as an active
research ficld, this still remains a formidable chal-

lenge in computer vision. Great advances inSCcene U8 2015, ginedes ot ol 2017: Zhang et al. 20182, Zhang
derstanding have been observed in the past few VEIrs . 01 2018h: Liu ot al., 2015). However, due to the
dueto the large scale production of incxpensive depth gy field-of-view (FOV) of RGB-D sensors, thos

sensors, such as Microsoft Kinect. Public RGBE-D
datasets have been created and widely used for many
3D tasks, including prediction of unobserved vo!
(Firman ct al.. 2016). segmentation of visible sur-
face (Silberman and Fergus, 2011; Ren et al.. 2012; This scenario recently started to change with the
Qi et al.. 2017h: Gupta et al., 2013, object detes use of more advanced technology for large-scale 3D
tion (Shrivastava and Mulam, 2013) and single object such as Light Detection and Ranging (LI
DAR) sensor and Matterport cameras. LIDAR is one
40 m forcid.oeg AXIO0-002-5037-71 of the most accurate depth ranging devices using a
ht pulse signal but it acquires only a point cloud
sct without colour or conncetivity. Some recent LI-
DAR devices provide coloured 3D structure by map-

methods only predict semantic libels for a small part
of the room and at Teast four images are required to
understand the whole scene.

- g ane vt apracs Thnery s Anplcsic A 20001 pagen 364

5 - Exars e Techmtagy Patimrsoms.

Published in the proceedings of the 15 International Conference on Computer Vision
Theory and Applications (VISAPP2020)

126



Publication 2:
Application Paper

Immersive Audio-Visual Scene
Reproduction using Semantic
Scene Reconstruction from
360° Cameras

Immersive Audio-Visual Scene Reproduction using Semantic Scene
Reconstruction from 360 Cameras

Hansung Kim, Luca Remaggi, Aloisio Dourado Neto, Teo de Campos, Philip J.B. Jackson and Adrian Hilton

Centre for Vision, Speech & Signal Processing
University of Surrey, United Kingdom

Assistinm Compariilh

System overvnew

Partitioning

fAIS VIDEO Semantic scene  Acoustic material mappmg VR scene rendering
MAIS VIDEOS i Voxel cloud generation  reconstruction with Spatial Audio

B & Youlube L2

https://www.cvssp.org/hkim/paper/CVST2020/
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Conclusion

Chapter 9
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Research Objectives
Achievement

New tools and models that could push SSC solutions
towards a complete understaging of the whole indoor
scene

* to assess the benefits of domain adaptation, semi-supervision and data

. augmentation in the 2D semantic segmenation context
2D Domain

e to apply current trends on 2D deep CNN training protocols to 3D SSC

* to propose and evaluate new SSC models that fully
exploits the information in the RGB-D images

EIRVOINEIN] « 16 propose and evaluate the benefits of semi-supervised learning

* to propose and evaluate a solution to perform 360°SSC

360°3D



Contributions

1. A new Domain Adaptation strategy for skin detection;

2. EdgeNet, a new end-to-end CNN architecture that fuses
depth and RGB edges;

3. a new 3D volumetric edge representation using F-TSDF;
4. a more efficient end-to-end training pipeline for SSC;
5. SPAwWN, a novel lightweight multimodal 3D SSC CNN;

6. BN-DDR, a memory-saving batch-normalized building block
for 3D CNNs;

7. a novel strategy to apply data augmentation technique for
3D SSC;

8. S3P, a novel 2D-prior-based semi-supervised training
approach to the SSC task.



Publications

4 high level conferences
1 Journal

1. Domain Adaptation for Holistic Skin Detection: proceedings
of the 34th SIBGRAPI Conference on Graphics, Patterns and
Images (SIBGRAPI 2021);

2. EdgeNet: Semantic Scene Completion from RGB-
D images: proceedings of the International Conference on
Pattern Recognition (ICPR 2020);

3. Data Augmented 3D Semantic Scene Completion With 2D
Segmentation: proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision (WACV 2022)

4. Semantic Scene Completion from a Single 360° Image and
Depth Map: proceedings of the Conference on Computer Vision
Theory and Applications (VISAPP 2020);

5. Immersive audio-visual scene reproduction using semantic
scene reconstruction from 360 cameras: Virtual Reality Journal
(VIRE).



1. Combining chapter 6 and 7: data augmentation and semi-
supervision combined into a single model;

Future Work

2. extending S3P to explore large-scale real 3D datasets
without dense 3D labels, but with 2D labels;

3. the resulting model could be used to replace EdgeNet as base
model for the 360 degree SSC approach.




Thank you!



