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Abstract

Semantic scene completion is the task of predicting a
complete 3D representation of volumetric occupancy with
corresponding semantic labels for a scene from a single
point of view. Previous works on Semantic Scene Comple-
tion from RGB-D data used either only depth or depth with
colour by projecting the 2D image into the 3D volume re-
sulting in a sparse data representation. In this work, we
present a new strategy to encode colour information in 3D
space using edge detection and flipped truncated signed dis-
tance. We also present EdgeNet, a new end-to-end neural
network architecture capable of handling features gener-
ated from the fusion of depth and edge information. Experi-
mental results show improvement of 6.9% over the state-of-
the-art result on real data, for end-to-end approaches.

1. Introduction
The ability of reasoning about scenes in 3D is a natu-

ral task for humans, but remains a challenging problem in
Computer Vision [7]. Knowing the complete 3D geometry
of a scene and the semantic labels of each 3D voxel has sev-
eral applications, like robotics, surveillance, assistive com-
puting, augmented reality and many others.

Given a partial 3D scene model generated from a single
RGB-D image, the goal of scene completion is to generate
a complete 3D voxelized volumetric representation where
each voxel is labelled as occupied by some object or free
space. In addition, for occupied voxels, the goal of seman-
tic scene completion is to assign a label that indicates to
which class of object it belongs, as shown on the right part
of Figure 1.

Our work focuses on semantic scene segmentation using
depth and colour. In order to address the RGB data sparsity
issue, we introduce a new strategy for encoding information
extracted from RGB image after projection from 2D to 3D.
We also present and evaluate a new end-to-end 3D CNN
architecture to deal with all the features gathered after fu-
sion of colour and depth. We propose a lightweight frame-
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Figure 1: Semantic scene completion. Given an RGB-D
image, the goal is to infer a complete 3D occupancy grid
with associated semantic labels. For instance, part of the
furniture is occluded by the bed, but its 3D reconstruction
should handle occlusions.

work and pipeline to train deep 3D semantic scene comple-
tion CNNs with lower memory and time requirements than
previous implementations. Comprehensive experiments are
conducted to evaluate the proposed solution. Results show
that our solution is superior to previous works.

To summarise, our main contributions are:

• a new strategy for encoding colour into a 3D volume
to address the sparsity problem of RGB data;

• a new end-to-end convolutional network architecture
that benefits from the fusion of depth and colour for
semantic scene segmentation;

• a lightweight framework to train deep 3D CNNs.

2. Related Work
Scene Semantic Completion (SSC) in 3D is a problem

that was established quite recently and has a high computa-
tional cost due to the volume of 3D data.

Song et al. [10] used a large synthetic dataset (SUNCG)
to generate approximately 140 thousand depth maps that
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were used to train a typical contracting fully convolutional
CNN with 3D dilated convolutions, called SSCNet. They
showed that jointly training for segmentation and comple-
tion leads to better results, as both tasks are inherently in-
tertwined. Zhang et al. [11] used Spatial Group Convolu-
tion (SGC) and a U-Net shaped network [8] for acceler-
ating the computation of 3D dense prediction. SGC was
used in the encoding branch of the U-Net, while regular 3D
convolutions and 3D transposed convolutions were used in
the decoding branch. Guedes et al. [2] reported prelimi-
nary results obtained by adding colour to an SSCNet-like
architecture [10]. They used three extra projected volumes,
corresponding to the channels of the RGB image, with no
encoding, resulting in 3 sparse cubes. The authors reported
no significant improvement using the colour information in
this sparse manner. Liu et al. [6] used depth maps and RGB
information as input of an encoder-decoder 2D segmenta-
tion CNN. The encoder branch of the 2D CNN is a ResNet-
101 [5] and the decoder branch contains a series of dense
upsampling convolutions. The generated features from the
2D CNN are then reprojected to 3D using camera parame-
ters, before being fed into a 3D CNN.

Using 2D segmentation maps on 3D SCC brings an ad-
ditional complexity to the training phase which is training
and evaluating the 2D segmentation network prior to the
3D CNN training. In this work, we focus on end-to-end
approaches, where the whole network can be trained and
evaluated as a whole.

3. Our Approach
We introduce a new strategy to fuse colour appearance

and depth information for 3D SSC. Our approach consists
on detecting edges in the image, which gives a 2D binary
representation of the scene that can highlight flat objects on
flat surfaces. For instance, a poster on a wall is expected to
be invisible in a depth map, especially after down-sampling.
On the other hand, RGB edges highlight the presence of
that object. We use the standard Canny edge detector [1]
to perform edge detection. Each edge location is projected
to a point in the 3D space using its depth information and
the camera calibration matrix. The resulting point cloud is
voxelised in the same way as the depth point clout, resulting
in a sparse volume of 240 x 144 x 240 voxels.

The main advantage of extracting edges and projecting
them to 3D is the possibility to apply F-TSDF on both edges
and surface volumes, as they are both binary, thus providing
two meaningful input signals to the 3D CNNs.

In order to better capture and aggregate information from
both depth and edges, we present a new 3D Semantic Seg-
mentation CNN that we call EdgeNet. Our proposed net-
work architecture is a deeper 3D CNN inspired by the U-
Net design [8] which has been successfully used in many
2D semantic segmentation problems, and is presented in

Figure 2. We address the degradation problem of deeper
networks, by replacing simple convolutional blocks of U-
Net by ResNet modules [5]. To match the resolution of
the output, the first 2 stages reduce the resolution to 1/4
of the input. Next blocks follows encoder-decoder design
and, following [10], we used dilated convolutions on lower
resolutions to improve the receptive field. The last stage is
responsible for reducing the number of channels to match
the desired number of output classes and loss calculations.

4. Experiments
In this section we describe the datasets and the evaluation

protocol used in this paper.
We train and validate our proposed approach on SUNCG

[10] and NYUv2 [9] datasets. SUNCG dataset consists
of about 45K synthetic scenes from which were extracted
more than 130K 3D scenes with corresponding depth maps
and ground truth divided in train and test datasets.

NYUv2 dataset includes depth and RGB images cap-
tured by the Kinect depth sensor divided in 795 depth im-
ages for training and 654 for test. Following the majority
of works in semantic segmentation we used ground truth
by voxelizing the 3D mesh annotations from [3] and and
mapped object categories based on [4].

We follow exactly the same evaluation protocol as [10],
with the same test datasets. For the semantic scene com-
pletion task, we report the IoU of each object class on both
the observed and occluded voxels. For the scene completion
task, all non-empty object classes are considered as one cat-
egory, and we report Precision, Recall and IoU of the binary
predictions on occluded voxels. Voxels outside the view or
the room are not considered.

5. Results
In this section we report quantitative results of EdgeNet

on NYUv2 and compare them to other end-to-end ap-
proaches.

Table 1 shows the results of EdgeNet on NYUv2 dataset
and compare them to recent end-to-end semantic scene
completion approaches, for models trained only on syn-
thetic data, only on NYU and on both synthetic and
NYU using fine tuning. We present results extracted from
their original papers. Overall, EdgeNet achieved the best
scores on each one of the training scenarios, improving the
state-of-art on 3D SSC on NYU. Considering training on
SUNCG and fine tuning on NYU the improvement was 3%
on scene completion and 6.9% on semantic scene comple-
tion.

Qualitative results on NYU are shown in Figure 3. Mod-
els used to generate the inferences were trained on SUNCG
and fine tuned on NYU. We compare results of SSCNet* to
our model. It is visually perceptible that EdgeNet presents
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Figure 2: The proposed U-shaped architecture with two possible sets of input channels: the proposed EdgeNet, which uses
depth and edges, and U-SSCNet, which has the same architecture but uses only depth as input (best viewed in colour).

train input model scene completion semantic scene completion (IoU, in percentages)
prec. rec. IoU ceil. floor wall win. chair bed sofa table tvs furn. objs. avg.

SUNCG d SSCNet[10] 55.6 91.9 53.2 5.8 81.8 19.6 5.4 12.9 34.4 26 13.6 6.1 9.4 7.4 20.2
d+e EdgeNet(Ours) 59.4 84.3 53.5 4.7 88.1 15.0 5.3 13.8 42.5 28.5 8.8 3.0 12.5 9.7 21.1

NYU d SSCNet[10] 57.0 94.5 55.1 15.1 94.7 24.4 0.0 12.6 32.1 35.0 13.0 7.8 27.1 10.1 24.7
SGC[11] 71.9 71.9 56.2 17.5 75.4 25.8 6.7 15.3 53.8 42.4 11.2 0.0 33.4 11.8 26.7

d+e EdgeNet(Ours) 78.4 66.2 56.0 19.7 94.9 28.1 0.0 7.5 52.5 41.8 10.4 0.0 34.7 12.8 27.5

SUNCG
+NYU

d SSCNet[10] 59.3 92.9 56.6 15.1 94.6 24.7 10.8 17.3 53.2 45.9 15.9 13.9 31.1 12.6 30.5
d+c Guedes et al. [2] - - 56.6 - - - - - - - - - - - 30.5
d+e EdgeNet(Ours) 76.3 71.1 58.3 23.6 95.0 28.6 12.6 13.1 57.7 51.1 16.4 9.6 37.5 13.4 32.6

Table 1: Semantic scene completion results of end-to-end approaches on NYU test set. Column ‘input’ indicates the type
of input: d=depth only; d+e=depth and edges. Column ‘train’ indicates dataset used for training the models. SUNCG + NYU
means trained on SUNCG and fine tuned on NYU. EdgeNet presented the best results on all training scenarios.

the best results.

In the first row of images of Figure 3, note how EdgeNet
correctly captures the details of the laptop and other small
objects on the table. The effect of the use of edges over flat
objects is made clear on the forth row. While SSCNet and
U-SSCNet are incapable of distinguishing the posters on the
wall, all edge networks highlight the presence of those ob-
jects, being EdgeNet more precise.

The second row of Figure 3 depicts some problems re-
lated to Ground Truth annotations on NYU dataset. Note
that neither the papers fixed on the wall nor the shelf ap-
pear in the Ground Truth. Most of the models captured the
shelf, but only EdgetNet inferred the presence of objects

fixed on the wall. When quantitative results are computed,
ground truth annotation flaws like these unfairly benefit the
less precise models and harm more precise models like Ed-
geNet.

6. Conclusion

This paper presented a new approach to fuse depth and
colour into a CNN for semantic scene completion. We in-
troduced the use of F-TSDF encoded 3D projected edges
extracted from RGB images. We also presented a new end-
to-end network architecture capable of properly aggregat-
ing edges and depth and extracting useful information from
both sources, with no requirement for previous 2D seman-
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Figure 3: Qualitative Results. We compare our results (EdgeNet) with scene completion results from Song et al. [10] on
SUNCG and NYU. Overall, EdgeNet gives more accurate voxel predictions (best viewed in colour).

tic segmentation training as previous depth plus colour ap-
proaches. Experiments with alternate models, showed that
both aggregating edges and the new proposed architecture
have positive impact on semantic scene completion, espe-
cially in hard to detect objects. Qualitative results show
visually perceptible improvements in 3D label inferences
and we have achieved improvement over the state-of-the-
art result on the NYU depth v2 dataset, for end-to-end ap-
proaches.

We developed a lightweight training pipeline for the task,
which reduced the memory footprint in comparison to the
original implementation of SSCNet and reduced the train-
ing time on SUNCG from 7 to 4 days and on NYU from 30
to 6 hours.
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