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Abstract—Semantic scene completion is the task of predicting
a complete 3D representation of volumetric occupancy with
corresponding semantic labels for a scene from a single point
of view. In this paper, we present EdgeNet, a new end-to-
end neural network architecture that fuses information from
depth and RGB, explicitly representing RGB edges in 3D space.
Previous works on this task used either depth-only or depth
with colour by projecting 2D semantic labels generated by
a 2D segmentation network into the 3D volume, requiring a
two step training process. Our EdgeNet representation encodes
colour information in 3D space using edge detection and flipped
truncated signed distance, which improves semantic completion
scores especially in hard to detect classes. We achieved state-
of-the-art scores on both synthetic and real datasets with a
simpler and a more computationally efficient training pipeline
than competing approaches.

I. INTRODUCTION

The ability of reasoning about scenes in 3D is a natural
task for humans, but remains a challenging problem in Com-
puter Vision [1]. Knowing the complete 3D geometry of a
scene and the semantic labels of each 3D voxel has many
practical applications, like robotics and autonomous navigation
in indoor environments, surveillance, assistive computing and
augmented reality.

Currently available low cost RGB-D sensors generate data
form a single viewing position and cannot handle occlusion
among objects in the scene. For instance, in the scene depicted
on the left part of Figure 1, parts of the wall, floor and furniture
are occluded by the bed. There is also self-occlusion: the
interior of the bed, its sides and its rear surfaces are hidden
by the visible surface.

Given a partial 3D scene model acquired from a single
RGB-D image, the goal of scene completion is to generate
a complete 3D volumetric representation where each voxel
is labelled as occupied by some object or free space. For
occupied voxels, the goal of semantic scene completion is to
assign a label that indicates to which class of object it belongs,
as illustrated on the right part of Figure 1.

Before 2018, most of the work on scene reasoning only
partially addressees this problem. A number of approaches
only infer labels of the visible surfaces [2], [3], [4], while
others only consider completing the occluded part of the scene,
without semantic labelling [5]. Another line of work focuses
on single objects, without the scene context [6].

The term semantic scene completion was introduced by
Song et al. [7], who showed that scene completion and
semantic labelling are intertwined and training a CNN to
jointly deals with both tasks can lead to better results. Their
approach only uses depth information, ignoring all information
from RGB channels. Colour information is expected to be
useful to distinguish objects that approximately share the same
plane in the 3D space, and thus, are hard to be distinguished
using only depth. Examples of such instances are flat objects
attached to the wall, such as posters, paintings and flat TVs.
Some types of closed doors and windows are also problematic
for depth-only approaches.

Recent research also explored colour information from on
RGB-D images to improve semantic scene completion scores.
Some methods project colour information to 3D in a naive
way, leading to a problem of data sparsity in the voxelised
data that is fed to the 3D CNN [8], while others uses RGB
information to train a 2D segmentation network and then
project generated features to 3D, requiring a complex two step
training process [9], [10].

Our work focuses on enhancing semantic scene segmenta-
tion scores using information from both depth and colour of
RGB-D images in an end-to-end manner. In order to address
the RGB data sparsity issue, we introduce a new strategy for
encoding information extracted from RGB image in 3D space.
We also present a new end-to-end 3D CNN architecture to
combine and represent the features from colour and depth.
Comprehensive experiments are conducted to evaluate the
main aspects of the proposed solution. Results show that our
fusion approach can enhance results of depth-only solutions
and that EdgeNet achieves equivalent performance to current
state-of-the-art fusion approach, with a much simpler training
protocol.

To summarise, our main contributions are:

• EdgeNet, a new end-to-end CNN architecture that fuses
depth, RGB edge information to achieve state-of-the-art
performance in semantic scene completion with a much
simpler approach;

• a new 3D volumetric edge representation using flipped
signed-distance functions which improves performance
and unifies data agregation for semantic scene completion
from RGBD;
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Fig. 1: Semantic scene completion. Given an RGB-D image,
the goal is to infer a complete 3D occupancy grid with
associated semantic labels.

• a more efficient end-to-end training pipeline for semantic
scene completion with relation to previous approaches.

II. RELATED WORK

Scene semantic completion in 3D is a problem that was
introduced relatively recently. Previous approaches to 3D SSC
rely on Fully Convolutional Neural Network architectures
(FCNs, introduced in [11]) and use SUNCG and NYUDv2 as
training sources (these datasets are described in Section IV-A).
We classify approaches into three main groups, based on
the type of input of the semantic completion CNN: depth
maps only, depth maps plus RGB and depth maps plus 2D
segmentation maps.

A. Depth maps only

Song et al. [7] used depth maps from the SUNCG synthetic
dataset to train a typical contracting fully convolutional CNN
with 3D dilated convolutions, called SSCNet. They showed
that jointly training for segmentation and completion leads
to better results, as both tasks are inherently intertwined.
To deal with data sparsity after projecting depth maps from
2D to 3D, the authors used a variation of Truncated Signed
Distance Function (TSDF) that they called Flipped TSDF
(F-TSDF). Zhang et al. [12] used dense conditional random
field to enhance SSCNet results. Guo and Tong [13] applied
a sequence of 2D convolutions to the depth maps, used a
projection layer to projected the features to 3D and feed the
output to a 3D CNN.

All solutions in this category are end-to-end approaches, in
other words, the network is trained as a whole, with no need
for extra training stages for specific parts. EdgeNet is an end-
to-end network as well. RGB edges are aggregated in the same
training pipeline of the depth information.

B. Depth maps plus RGB

Guedes et al. [8] reported preliminary results obtained by
adding colour to an SSCNet-like architecture. In addition to
the F-TSDF encoded depth volume, they used three extra
projected volumes, corresponding to the channels of the RGB
image, with no encoding, resulting in 3 sparse volumetric

representation of the partially observed surfaces. The authors
reported no significant improvement using the colour informa-
tion in this sparse manner.

C. Depth maps plus 2D segmentation

Models in this category use a two step training protocol,
where a 2D segmentation CNN is first trained and then it is
used to generate input to a 3D semantic scene completion
CNN. Current models differ in the way the generated 2D
information is fed into the 3D CNN.

Garbade et al. [9] used a pre-trained 2D segmentation CNN
with a fully connected CRF [14] to generate a segmentation
map, which, after post-processing, was projected to 3D. Liu
et al. [10] used depth maps and RGB information as input
to an encoder-decoder 2D segmentation CNN. The encoder
branch of the 2D CNN is a ResNet-101 [15] and the decoder
branch contains a series of dense upsampling convolutions.
The generated features from the 2D CNN are then reprojected
to 3D using camera parameters, before being fed into a 3D
CNN. The authors showed results using 2 different strate-
gies to fuse depth and RGB: SNetFusion performs fusion
just after the 2D segmentation network, while TNetFusion
only performs fusion after the 3D convolutional network.
TNetFusion achieves higher performance, with a much higher
computational cost. The 2D CNN is also pre-trained offline.

Using 2D segmentation maps on 3D SSC brings an addi-
tional complexity to the training phase which is trains and
evaluates the 2D segmentation network prior to the 3D CNN
training. In this work, we propose an end-to-end approach to
fuse information from depth and colour, where the network
can be trained and evaluated as a whole, and still achieves
state-of-the-art performance.

III. OUR SOLUTION: EDGENET

Our proposed solution is the first end-to-end approach that
successfully uses information from RGB to improve semantic
scene completion performance over depth only. It consists in
a novel approach to encode information from RGB edges and
depth maps and a new 3D CNN architecture to fuse both
modalities that we call EdgeNet.

A. Encoding edges in 3D

As discussed earlier, colour information should complement
depth maps for 3D semantic scene completion. However,
combination of these modalities in a meaningful representation
for learning is not trivial. Guedes et al. [8] naively added 3
channels to each voxel to insert R, G and B colour information
into the representation, with no encoding. In this way, the vast
majority of voxels have no colour data while only those at the
visible surface have a colour value. This explains why they
do not improve on the previous approach using depth only.
Song et al. [7] demonstrate that F-TSDF encoding plays an
important role in feeding a projected depth map to a 3D CNN
and produces better results than TSDF and other encoding
techniques.



(a) (b)

Fig. 2: Projection of Edges to 3D: (a) original RGB image,
(b) voxelized edges after projection.

Given a sparse 3D voxel volume, the Truncated Signed Dis-
tance Function (TSDF) consists in computing the Euclidean
distance of each empty voxel to the nearest occupied voxel.
The signal of occluded regions is set to be negative, while
visible regions are given positive values. Near the occupied
surface, TSDF produces a value that tends to zero on both sides
(and its first derivative tends to zero as well). TSDF values
are normalised to [-1,1]. Flipped TSDF (F-TSDF) follows the
same principle, but the absolute values of both visible and
occluded regions are flipped:

F-TSDF = sign(TSDF) · (1− |TSDF |). (1)

A discontinuity near the occupied surface (from -1 to 1) occurs
and the first derivative tends to infinity.

F-TSDF encoding of volumetric data can be easily applied
to depth maps after 3D projection because each voxel carries
binary information: occupied or free. On the other hand,
F-TSDF can not straightforwardly be applied to RGB or
semantic segmentation maps, because they are not binary.

To deal with this problem, we introduce a new strategy to
fuse colour appearance and depth information for 3D semantic
scene completion. Our approach exploits edge detection in the
image, which gives a 2D binary representation of the scene that
can highlight objects that are hard to detect in depth maps. For
instance, a poster on a wall is expected to be invisible in a
depth map, especially after down-sampling. On the other hand,
RGB edges highlight the presence of that object.

The main advantage of extracting edges and projecting
them to 3D is the possibility to apply F-TSDF on both edges
and surface volumes, as they are both binary, providing two
meaningful input signals to the 3D CNNs. Another advantage
is that due to their simplicity, edges are more transferable,
removing the need for the application of a domain adaptation
method when learning from synthetic images and applying on
real images.

We apply F-TSDF to 3D edges, similarly to F-TSDF applied
to 3D surfaces: for each voxel in the edge volume, we look for
the nearest edge to calculate the Euclidean distance. Visible
and occluded voxels are related only to edges, not to surfaces.
We use the standard Canny edge detector [16] to perform edge
detection. Each edge location is projected to a point in the 3D
space using its depth information and the camera calibration
matrix. The resulting point cloud is voxelised in the same
way as the depth point cloud, resulting in a sparse volume

(a) (b)

Fig. 3: (a) original scene. (b) F-TSDF of edges in 3D. The
edge image is a horizontal cut of the scene, taken just above
the bed. Only F-TSDF values with absolute value greater than
0.8 are shown (best viewed in colour).

of 240× 144× 240 voxels. Figure 2 shows a scene from the
SUNCG dataset and its corresponding edges projected to 3D.
Figure 3b shows in detail a region of the projected edges of 3a
after F-TSDF encoding. Note that the greatest gradients occur
along the edges.

B. EdgeNet architecture

In order to combine depth and edge modalities, we propose
a new 3D semantic segmentation CNN architecture that we
call EdgeNet. Our proposed solution is a 3D CNN inspired
by the U-Net design [17] which has been successfully used in
many 2D semantic segmentation problems, and is presented
in Figure 4. We address the degradation problem of deeper
networks [18], by replacing simple convolutional blocks of
U-Net by ResNet modules [15]. On lower resolutions, the
ResNet modules uses dilated convolutions to improve the
receptive field. To match the resolution of the output, the
input branch reduces the resolution to 1/4 of the input. Next
blocks follows encoder-decoder design and the last stage of
the decoding branch is responsible for reducing the number
of channels to match the desired number of output classes
and loss calculations.

Depth and Edges Fusion Schemes. The encoder-decoder
structure of EdgeNet allows us to evaluate three fu-
sion schemes: Early Fusion (EdgeNet-EF), Middle Fusion
(EdgeNet-MF) and Late Fusion (EdgeNet-LF). In EdgeNet-
EF, just after F-TSDF encoding, both input volumes are
concatenated and fed into the main network. In EdgeNet-MF,
the input branch is divided into two parts while in EdgeNet-
LF, both input and encoding branches are divided. To keep
the same memory requirement in all fusion schemes, the total
quantity of channels in all scheme is always the same.

Data balancing and loss function. In volumetric data,
occluded and occupied voxels are highly unbalanced, so we
use a weighted version of categorical cross entropy as the
loss function to train our models. To obtain the weights, for
each training batch, we randomly initialize a tensor randoccl
of the same shape as the batch with ones and zeroes using
the ratio r = (2

∑
occu/

∑
occl), where occl and occu are

two tensors obtained from the previously calculated occupancy
grid relative to occluded and occupied voxels. The final weight
tensor is w = occu + occl � randoccl, where � denotes the
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Fig. 4: EdgeNet architecture and fusion schemes (best viewed in colour).

Hadamard product. Let p be the predicted probabilities of the
12 classes for each voxel and y be the one hot encoded ground
truth tensor. The categorical cross entropy loss function is then
given by

Lcce(p, y) = −
∑

(w � y � log p). (2)

C. Training pipeline with offline data preparation

As F-TSDF calculation is computationally intensive, to
reduce overall training time, the F-TSDF volumes that feed
the models are preprocessed off-line once. The preprocessed
dataset is then stored, and may be used as many times as
needed, including by different models. Following previous
works, we rotate the 3D Scene to align it with gravity and
have room orientation based on the Manhattan assumption. We
fixed the dimensions of the 3D space to 4.8 m horizontally,
2.88 m vertically and 4.8 m in depth. Voxel grid size is 0.02
m, resulting in a 240 × 144 × 240 3D volume. The TSDF
truncation value is 0.24 m. Surface and edge projection as
well as F-TSDF encoding of all volumes are done in this
stage. During preprocessing, we also calculate an occupancy
grid where we distinguish occupied voxels inside the room
and FOV; non-occupied occluded voxels inside the room and
FOV; and all other voxels. This occupancy grid will be further
used to balance the dataset during training time.

IV. EXPERIMENTS

In this section we describe the datasets and the evaluation
protocol used in this paper.

A. Datasets

We train and validate our proposed approach on SUNCG
[7] and NYUDv2 [19] datasets. The SUNCG dataset consists
of about 45K synthetic scenes from which more than 130K
3D scenes were rendered with corresponding depth maps
and ground truth, divided in train and test datasets. As the
original training and test sets did not include RGB images,
we extracted the camera poses from the provided ground truth
and rendered a new set of depth and RGB images from the
SUNCG synthetic scenes. To avoid misalignments, the ground
truth volumes were regenerated from the scene meshes.

NYUDv2 is a widely used dataset of indoor scenes that
includes depth and RGB images captured by the Kinect depth
sensor, divided in 795 samples for training and 654 for test.
Following the majority of works in semantic segmentation
we used ground truth obtained by voxelizing the 3D mesh
annotations from [20] and and mapped object categories based
on [21].

B. Training protocols

Our experiments consists in training our models from
scratch on SUNCG and NYUDv2, and also fine-tuning models
trained from SUNCG to NYUDv2. For experiments in which
we trained our models from scratch, we use the technique
known as One Cycle Learning [22], which is a combination
of Curriculum Learning [23] and Simulated Annealing [24].
After some preliminary tests, we found 0.01 to be a good base
learning rate. We use a maximum of 30 epochs, in order to



maintain total training time in a acceptable limit. Following
[22], we start with the base learning rate and linearly increase
the effective learning until 0.1 in the 10th epoch, then linearly
decrease the learning rate until reach the start-up level in the
20th epoch. During the annealing phase, we linearly go from
0.01 to 0.0005 in a further 10 epochs. Due to GPU memory
size constraints, we use a batches of 3 samples. We also
use SGD optimizer with a momentum of 0.9 and decay of
0.0005 in all experiments, as used in most previous works.
For SUNCG, each epoch consists of 30,540 scenes randomly
selected from the whole training set. For NYUDv2, each epoch
comprises the whole training set. For fine tuning, we initialize
the network with parameters trained on SUNCG and use the
standard training policy with SGD with fixed learning rate of
0.01 and 0.0005 of weight decay.

Thanks to our lightweight training pipeline with offline
F-TSDF preprocessing, our training time is only 4 days on
SUNCG and 6 hours on NYUDv2, using a GTX 1080 TI.

C. Evaluation

For the semantic scene completion task, we report the
Intersection over Union (IoU) of each object class on both
the observed and occluded voxels. For the scene completion
task, all non-empty object classes are considered as one
category, and we report Precision, Recall and IoU of the binary
predictions on occluded voxels. Voxels outside the view or the
room are not considered.

D. Experimental results

We compare our results to semantic scene completion
approaches that use depth-only [13], [7], [12], depth plus RGB
[8] and depth plus 2D segmentation maps [9], [10]. We also
investigate the effects of the main aspects of our proposed
solution on SUNCG. Comparative results were extracted from
the original papers.

1) Ablation Studies and results on SUNCG: In Table I,
investigate the effects of the main aspects of our proposed
solution. At first, we analyse the effect of our training pipeline.
We took SSCNet as a baseline and retrain it, using our light-
weight training framework, that allows a batch size of 3
samples in comparison to the 1 sample batch size of original
SSCNet. Results of that experiment are shown as SSNet*. We
observed a large improvement on SSC scores just using our
pipeline.

After isolating the effect of our training protocol, we inves-
tigate the effect of our encoder-decoder architecture, with di-
lated ResNet modules. To accomplish this, we used EdgeNet-
D, that is the Ednet architecture fed only with depth, without
edges. Once again we observed a high level of improvement,
comparing to SSCNet*. EdgeNet-D also got the best overall
scores amongst the depth-only approaches. Next experiment
evaluates the effect of adding edges to an existing depth-
only architecture. We took SSCNet and fed it with both depth
and edges after F-TSDF encoding (SSCNet-E). We observed
improvements compared to SSCNet* on overall scores and
especially on hard-to-detect classes like TVs and objects.

Finally, we evaluate the benefits of adding Edges to our
architeture in three fusion schemes: EdgeNet-EF, EdgeNet-MF
and EdgeNet-LF. Performance gains from EdgeNet-D show,
once again, that adding edges is useful. A discussion about
fusion schemes is provided on Section V.

We also compare EdgeNet results to previous approaches.
Overall, our proposed solutions achieve the best performance
by a large margin. EdgeNet-EF achieves best average scores,
while EdgeNet-MF achieves the best score in some classes.
EdgeNet-EF surpassed VVNetR120, the best previous ap-
proach on average SSC, by 3.3%. As expected, the highest
improvements are observed on hard to detect classes, like
objects and TVs. Although SUNCG is synthetic, evaluation
on this dataset is quite important because of the poor quality
of the ground truth in NYU, which impacts negatively accurate
models like EdgeNet.

E. Results on NYUDv2

Table II shows the results of EdgeNet on NYUDv2 dataset
and compares it with previous approaches. We compare results
for models trained only on synthetic data, only on NYUDv2
and on both synthetic and NYUDv2 using fine tuning.

On SUNCG-only and on NYUDv2-only training scenarios,
EdgeNet-MF achieved the best overall scores on Scene Com-
pletion and Semantic Scene Completion. On SUNCG+NYU
training scenario, however, TNetFuse presented the best result.
EdgeNet-MF achieved best scores on structural elements and
chair. It is worth mentioning that the NYUDv2 dataset has
severe ground truth errors and misalignment, so results are
not precise, and small differences in results may be questioned
(see Section IV-F).

Despite these problems on NYU ground truth, EdgeNet
achieves state-of-the-art level results with a much simpler and
more computationally efficient training pipeline. EdgeNet is
an end-to-end approach, and its memory consumption allows
a batch size of 3 samples in a GTX 1080TI GPU, while
TNetFuse requires a complex two step training procedure and
uses a batch size of only 1 sample, in the same GPU.

F. Qualitative Results

Qualitative results on NYUDv2 are shown in Figure 5. Mod-
els used to generate the inferences were trained on SUNCG
and fine tuned on NYUDv2. We compare results of SSCNet*
to our three models. It is visually perceptible that EdgeNet
presents more accurate results.

In the first row of images of Figure 5, note the presence
of a picture and a window, and observe that the ground truth
misses the window. SCCNet* did not detect the picture and
the window while EdgeNet-MF detects the window and some
parts of the picture. This ground truth mislabelling affects
negatively the performance of EdgeNet.

The second row of Figure 5 also depicts some problems
related to Ground Truth annotations on NYUDv2 dataset. Note
that neither the papers fixed on the wall nor the shelf appear
in the Ground Truth. All models captured the shelf, but only
EdgetNet inferred the presence of objects fixed on the wall.



input model scene completion semantic scene completion (IoU, in percentages)
prec. rec. IoU ceil. floor wall win. chair bed sofa table tvs furn. objs. avg.

d

SSCNet[7] 76.3 95.2 73.5 96.3 84.9 56.8 28.2 21.3 56.0 52.7 33.7 10.9 44.3 25.4 46.4
SSCNet* 92.7 89.7 83.8 97.0 94.6 74.3 51.1 43.7 78.2 70.9 49.5 45.2 61.0 51.3 65.2

DCRF [12] 95.4 84.3 57.7 24.5 28.2 63.4 55.3 34.5 19.6 45.8 28.7 48.8
VVNetR-120 [13] 90.8 91.7 84.0 98.4 87.0 61.0 54.8 49.3 83.0 75.5 55.1 43.5 68.8 57.7 66.7

EdgeNet-D 93.1 90.4 84.8 97.2 94.4 78.4 56.1 50.4 80.5 73.8 54.5 49.8 69.5 59.2 69.5

d+s SNetFuse[10] 56.7 91.7 53.9 65.5 60.7 50.3 56.4 26.1 47.3 43.7 30.6 37.2 44.9 30.0 44.8
TNetFuse[10] 53.9 95.2 52.6 60.6 57.3 53.2 52.7 27.4 46.8 53.3 28.6 41.1 44.1 29.0 44.9

d+e

SSCNet-E 92.8 89.6 83.8 97.0 94.5 74.6 51.8 43.9 77.0 70.8 49.3 49.2 62.1 52.0 65.7
EdgeNet-EF(Ours) 93.7 90.3 85.1 97.2 94.9 78.6 57.4 49.5 80.5 74.4 55.8 51.9 70.1 62.5 70.3
EdgeNet-MF(Ours) 93.3 90.6 85.1 97.2 95.3 78.2 57.5 51.4 80.7 74.1 54.5 52.6 70.3 60.1 70.2
EdgeNet-LF(Ours) 93.0 89.6 83.9 97.0 94.6 76.4 52.0 44.6 79.8 71.5 48.9 48.3 66.1 55.9 66.8

TABLE I: Results and ablation studies on SUNCG test set. We took SSCNet as a baseline and show the effect of each one
of the main aspects of our proposed approach. Column ‘input’ indicates the type of input: d = depth only; d+e = depth + edges.
SSCNet* is our implementation of the original SSCNet, with our training pipeline. EdgeNet-D has the same architecture of
the other versions of EdgeNet, but the edge volume is not fed into the network. EdgeNet-EF achieves the best overall scores
and surpassed VVNetR-120 by 3.3% on average IoU for semantic scene completion.

train input model scene completion semantic scene completion (IoU, in percentages)
prec. rec. IoU ceil. floor wall win. chair bed sofa table tvs furn. objs. avg.

SUNCG

d SSCNet[7] 55.6 91.9 53.2 5.8 81.8 19.6 5.4 12.9 34.4 26 13.6 6.1 9.4 7.4 20.2

d+e
EdgeNet-EF(Ours) 61.9 80.0 53.6 9.1 92.9 18.3 5.7 15.8 40.4 30.7 9.2 3.3 13.7 11.6 22.8
EdgeNet-MF(Ours) 60.7 80.3 52.8 11.0 92.3 20.5 7.2 16.3 42.8 32.8 10.5 6.0 15.7 11.8 24.3
EdgeNet-LF(Ours) 59.9 80.5 52.3 3.2 87.1 19.9 8.6 15.4 43.5 32.3 8.8 4.3 13.7 10.0 22.4

NYU

d SSCNet[7] 57.0 94.5 55.1 15.1 94.7 24.4 0.0 12.6 32.1 35.0 13.0 7.8 27.1 10.1 24.7

d+e
EdgeNet-EF(Ours) 78.1 65.1 55.1 21.8 95.0 27.3 8.4 6.8 53.1 38.6 7.5 0.0 30.4 13.3 27.5
EdgeNet-MF(Ours) 76.0 68.3 56.1 17.9 94.0 27.8 2.1 9.5 51.8 44.3 9.4 3.6 32.5 12.7 27.8
EdgeNet-LF(Ours) 75.5 67.5 55.4 19.8 94.9 24.4 5.7 7.2 50.3 38.8 10.0 0.0 33.2 12.2 27.0

SUNCG
+

NYU

d
SSCNet[7] 59.3 92.9 56.6 15.1 94.6 24.7 10.8 17.3 53.2 45.9 15.9 13.9 31.1 12.6 30.5
DCRF[12] - - - 18.1 92.6 27.1 10.8 18.8 54.3 47.9 17.1 15.1 34.7 13.0 31.8

VVNetR-120[13] 69.8 83.1 61.1 19.3 94.8 28.0 12.2 19.6 57.0 50.5 17.6 11.9 35.6 15.3 32.9
d+c Guedes et al. [8] - - 56.6 - - - - - - - - - - - 30.5

d+s
Garbade et al. *[9] 69.5 82.7 60.7 12.9 92.5 25.3 20.1 16.1 56.3 43.4 17.2 10.4 33.0 14.3 31.0

SNetFuse[10] 67.6 85.9 60.7 22.2 91.0 28.6 18.2 19.2 56.2 51.2 16.2 12.2 37.0 17.4 33.6
TNetFuse[10] 67.3 85.8 60.7 17.3 92.1 28.0 16.6 19.3 57.5 53.8 17.7 18.5 38.4 18.9 34.4

d+e
EdgeNet-EF(Ours) 77.0 70.0 57.9 16.3 95.0 27.9 14.2 17.9 55.4 50.8 16.5 6.8 37.3 15.3 32.1
EdgeNet-MF(Ours) 79.1 66.6 56.7 22.4 95.0 29.7 15.5 20.9 54.1 53.0 15.6 14.9 35.0 14.8 33.7
EdgeNet-LF(Ours) 77.6 69.5 57.9 20.6 94.9 29.5 9.8 18.1 56.2 50.5 11.4 5.2 35.9 15.3 31.6

TABLE II: Semantic scene completion results on NYUDv2 test set. Column input indicates the type of input: d=depth only;
d+s=depth and segmentation maps; d+e=depth and edges. Column train indicates dataset used for training the models. SUNCG
+ NYU means trained on SUNCG and fine tuned on NYUDv2.

When quantitative results are computed, these ground truth
annotation flaws unfairly benefit the less precise models and
harm more precise models like ours.

V. DISCUSSION

In this section we discuss key aspects and contributions of
our proposed approach.

Has the new training pipeline any influence over results?
We compared the results originally achieved by SSCNet to
results of the version of it trained with our pipeline (SSCNet*).
On SUNCG we observed an improvement of almost 20%
on semantic scene completion and more than 10% on scene
completion. Besides the improvements on model performance,
the more computationally efficient pipeline also contributed to
reduce training time from 7 days to 4 days when training
on SUNCG and from 30 hours to 6 hours when training
on NYUDv2, with a batch of size 3, whereas the original
framework only allowed a batch size of 1 sample on a

GTX 1080Ti (which has 11GB of memory). Besides reducing
training time, larger batch sizes enhance training stability,
acting as a regularizer [25].

Is a deeper U-shaped CNN with dilated ResNet mod-
ules helpful? We investigated the effects of our architecture
with and without aggregating edges. On both scenarios, our
proposed architecture outperformed the shallower network,
confirming that our network architecture is helpful.

Is aggregating edges helpful? May Other 3D CNN
architectures benefit from aggregating edges? We compared
the original SSCNet architecture trained with our pipeline
to a modified version of it that aggregates edges encoded
with F-TSDF (SSCNet-E). SSCNet-E presented better results
on SUNCG, demonstrating that the aggregation of edge in-
formation is helpful. We also observed improvements using
a deeper depth-only network (EdgeNet-D). This experiments
demonstrates that the proposed 3D volumetric representation
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(a) RGB image (b) Ground Truth (c) SSCNet* (d) EdgeNet-EF (e) EdgeNet-MF (f) EdgeNet-LF

Fig. 5: Qualitative Results. We compare EdgeNet results using SSCNet* as a baseline on SUNCG and NYUDv2. Overall,
EdgeNet gives more accurate voxel predictions, especially for hard to detect clases (best viewed in colour).

of color edges can improve the performance of other previous
depth only approaches.

What is the best fusion strategy? The later the fusion, the
higher is the memory requirement, due to the duplication of
convolutional branches. Higher memory may imply in smaller
batch sizes which may negatively impact learning. Liu et
al. [10] observed better results using late fusion, but they
faced the problem of higher memory consumption. Our choice
was to fix the memory footprint, reducing the number of
channels of duplicated branches without compromising the
training time and stability. However, very late fusion schemes
may suffer from accuracy degradation due to reduced number
of parameters in deeper layers. Taking those aspects into
account, we found that a mid-level fusion strategy works and
generalizes better for EdgeNet considering both synthetic and
real datasets.

How does EdgeNet compare to other RGB + depth
approaches? We have compared EdgeNet with other RGB +
depth approachs on SUNCG (Table I) and NYUDv2 (Table II.
On SUNCG, EdgeNet versions surpassed previous approaches
by a large margin. On NYU, EdgeNet got similar results as the
solutions from TNetFuse [10], with less than 1% difference.
It is important to observe NYU ground truth annotations are

not precise, which impacts negatively more accurate models.
Another aspect that is worth mentioning is that TNetFuse
needs a complex and less computationally efficient two-step
training protocol, while EdgeNet and the previous depth-only
solutions cited in this paper are end-to-end networks, with a
much simpler and efficient training pipeline.

VI. CONCLUSION

This paper presented a new approach to fuse depth and
colour into a CNN for semantic scene completion. We in-
troduced the use of F-TSDF encoded 3D projected edges
extracted from RGB images. We also presented a new end-
to-end network architecture capable of properly aggregating
edges and depth, extracting useful information from both
sources, without requiring previous 2D semantic segmentation
training as is the case of previous approaches that combine
depth and colour. Experiments with alternate models, showed
that both aggregating edges and the new proposed architecture
have positive impact on semantic scene completion, especially
for hard to detect objects. Qualitative results show significant
improvement for objects such as pictures, which cannot be
differentiated by depth only. On SUNCG, we have achieved
the best overall result, and on NYU, we have achieved the



state-of-the-art results of other approaches that use a more
complex training protocol.

Experiments showed that our proposed approach of ag-
gregating Edges may be applied to other existing solutions,
opening room for further improvements.

We also developed a lightweight training pipeline for the
task, which reduced the memory footprint in comparison to
other solutions and reduced the training time on SUNCG from
7 to 4 days and on NYUDv2 from 30 to 6 hours, that we intend
to make public upon acceptance of this paper.
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