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Semantic Scene Completion
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[1] S. Song, F. Yu, A. Zeng, A. X. Chang, M. Sawa, and T. Funkhouser. Semantic Scene Completion from a Single Depth Image. In Conference on Computer Vision
and Pattern Recognition (CVPR), 2017



Characteristics of current approaches

e Uses as input RGB-D (Microsoft® Kinect)

* Based on 3D CNNs

* Requires a large amount of data to train

* Trained on synthetic datasets (SUNCG)

* Fine-tuned on real data (NYU)

e Uses Flipped Truncated Signed Distance Function (F-TSDF)



Types of SSC Solutions

* Depth map only:
* SSCNET: Song et al.[1]

» Spatial Group Convolutions: Zhang et~ Neglects the RGB channels
al.[2] from the input data

e View-Volume Network : Guo and
Tong|3]

[1] S. Song, F. Yu, A. Zeng, A. X. Chang, M. Savva, and T. Funkhouser. Semantic Scene Completion from a Single Depth Image.

In CVPR, 2017
[2] J. Zhang, H. Zhao, A. Yao, Y. Chen, L. Zhang, and H. Liao. Efficient semantic scene completion network with spatial group

convolution. In ECCV, 2018
[3] Y. Guo and X. Tong. View-Volume Network for Semantic Scene Completion from a Single Depth Image. In Proceedings of the

Twenty-Seventh International Joint Conference on
Artificial Intelligence, pages 726—732, Stockholm, Sweden,July 2018



Types of SSC Solutions

* Depth maps plus RGB:

* Guedes et al.[4] Suffer from RGB data
sparsity after projection to
3D

[4] A. B. S. Guedes, T. E. de Campos, and A. Hilton. Semantic scene completion combining colour and depth: preliminary
experiments. CoRR, abs/1802.04735, 2018



Types of SSC Solutions
* Depth map plus 2D

segmentation: Requires a complex two
* Two stream 3D semantic scene step training procedure
completion: Garbade et al.[5] (2D CNN then 3D CNN)

 TNetFusion: Liu et al.[6]

[5] M. Garbade, J. Sawatzky, A. Richard, and J. Gall. Two stream 3D semantic scene completion. CoRR, abs/1804.03550, 2018
[6] S. Liu, Y. HU, Y. Zeng, Q. Tang, B. Jin, Y. Han, and X. Li. See and think: Disentangling semantic scene completion. In S. Bengio, H. Wallach, H.

Larochelle, K. Grauman, N. CesaBianchi, and R. Garnett, editors,Conference on Neural Information Processing Systems (NeurlPS), pages
263-274. Curran Associates, Inc., 2018



Current Semantic Scene Completion Limitations

Panoramic Image from
Matterport Camera
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Obstacles to 360° Semantic Scene Completion

* The task has a high memory footprint

* Current 360° datasets are not large enough or not diverse enough to
train deep 3D CNNs
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Our approach
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This approach allows to use existinglarge =~ The 3DCNN is trained using SUNCG and
and diverse RGB-D datasets for training. fine-tuned in NYUDV2
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Our approach

* Input volume:
e 480 x 144 x 480 voxels
e VVoxel size: 0.02m

* coverage

:9.6x2.8x9.6m
* 8 partitions, emulating the field of view of a

standard RGB-D sensor

* The partitions are taken from the sensor
position, using a 45° step

* We move't
the origina
overlappec

ne point-of-view 1.7m back from
sensor position, to get more

coverage

Input Partitioning
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Our approacn

* Each partition of the input is processed by
our CNN, generating 8 predicted volumes

* Overlapping areas are ensembled using
the sum rule

* Each predicted partition size is 60 x 36 x
60

* The resulting ensembled volume size is
120 x 36 x 120

Prediction Ensemble
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Our Network: EdgeNet|[8]
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[8] Dourado, A., de Campos, T. E., Kim, H., and Hilton, A. (2019). EdgeNet: Semantic scene completion from RGB-D

images. Technical Report arXiv:1908.02893, Cornell University Library. http://arxiv.org/abs/1908.02893.



Results on Stanford 2D-3DS Dataset

RGB Image Input Volume Predicted Volume
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Results on Stanford 2D-3DS Dataset

evaluation del scene semantic scene completion (IoU, in percentages)
dataset ode coverage |ceil. floor wall win. chair bed sofa table tvs furn. objs. avg.
SSCNet 15.1 94.6 24.7 10.8 17.3 53.2 45.9 15.9 13.9 31.1 12.6 30.5
NYU v2 RGB-D | SGC partial |17.5 75.4 25.8 6.7 15.3 53.8 424 11.2 0.0 33.4 11.8 26.7
EdgeNet 23.6 95.0 28.6 12.6 13.1 57.7 51.1 164 9.6 37.5 13.4 32.6
Stanford 2D-3D-S| Owurs [full (360°){15.6 92.8 50.6 6.6 26.7 - 354 33.6 - 322 154 343
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Experiments on Spherical Stereo Images

* Stereo capture using commercial 360° cameras is one realistic approach
to 360° SSC

* The capture processes is faster compared to Matterport scaning

* However, depth estimation is subject to errors due to occlusions
between two camera views and correspondence matching errors
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Experiments on Spherical Stereo Images

* The scenes are captured as a vertical stereo image pair

* Dense stereo matching with spherical stereo geometry [7] is used to
recover depth information

* We proposed a depth map enhancement procedure:

* Align the scene using the Manhattan principle
* Apply Canny Edge Detector to extract the most reliable depth estimations

* Use RANSAC to fit a plane over coherent regions with similar colours

[7] Kim, H. and Hilton, A. (2015). Block world reconstruction from spherical
stereo image pairs. Computer Vision and Image Understanding (CVIU),

139(C):104-121.
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Results on Spherical Images

RGB Image Original Depth Map Ehanced Depth Map Input Volume
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Conclusions

* This paper introduced the task of Semantic Scene Completion from a pair of
360° image and depth map.

 Our method predicts 3D voxel occupancy and its semantic labels for a
whole scene from a single point of view

* The method can be applied to various range of images acquired from high-
end sensors like Matterport to off-the-shelf 360° cameras

* Our method was evaluated the publicly available Stanford 2D-3D-Semantics
dataset and a collection of 360° stereo images gathered with off-the-shelf
spherical cameras.

e Qualitative analysis shows high levels of completion of occluded regions on
both Matteport and spherical images.
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