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Presentation Outline

•Motivation

• Introduction to Semantic Scene Completion (SSC)

• Improving SSC from Regular RGB-D Images using Edges

• Extending SSC to a full 360o scene coverage
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• Future Work
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Semantic Scene Completion

Introduced by Song 
et al.[1] in 2017

Trained a 3D CNN 
that jointly deals with
both completion and

semantic
segmentation

[1] S. Song, F. Yu, A. Zeng, A. X. Chang, M. Savva, and T. Funkhouser. Semantic Scene Completion from a Single Depth Image. In Conference on Computer Vision 

and Pattern Recognition (CVPR), 2017

5



Previous works
• Depth map only:

• SSCNET: Song et al.[1]
• Typical contracting only 3D CNN with dilated convolutions

• Depth map encoded with F-TSDF

• Weighted softmax loss

• Train on SUNCG, Fine tune on NYU

• Spatial Group Convolutions: Zhang et al.[2]
• U-Shaped 3D CNN

• SGC used in the decoding branch

• No fine tune

• View-Volume Network : Guo and Tong[3]
• Applyied 2D convolutions to the depth maps then projected resulting features to 3D using a projection 

layer

• Used a proprietary evaluation protocol

[1] S. Song, F. Yu, A. Zeng, A. X. Chang, M. Savva, and T. Funkhouser. Semantic Scene Completion from a Single Depth Image. In CVPR, 2017

[2] J. Zhang, H. Zhao, A. Yao, Y. Chen, L. Zhang, and H. Liao. Efficient semantic scene completion network with spatial group convolution. In ECCV, 2018
[3] Y. Guo and X. Tong. View-Volume Network for Semantic Scene Completion from a Single Depth Image. In Proceedings of the Twenty-Seventh International Joint Conference on

Artificial Intelligence, pages 726–732, Stockholm, Sweden,July 2018 6



Previous works
• Depth maps plus RGB:

• Guedes et al.[4]
• 3 channels of RGB data projected to 3D

• Same architecture as SSCNET

• no significant improvement

• Some implementation details:

• Customized Caffe environment, locked to an old version: hard to setup

• All job done inside Caffe layers: GPU overload, time consuming

• Memory intensive: batch size = 1

[4] A. B. S. Guedes, T. E. de Campos, and A. Hilton. Semantic scene completion combining colour and depth: preliminary experiments. CoRR, abs/1802.04735, 2018
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Previous works
• Depth map plus 2D segmentation:

• Two stream 3D semantic scene completion: Garbade et al.[5]
• 2D pretrained segmentation CNN and a Fully Connected CRF to generate a 2D segmentation map from 

RGB

• Predicted 2D labels are projected to 3D and fused to the 3D branch (no one-hot-encoding)

• TNetFusion: Liu et al.[6]
• depth maps and RGB information as input of an encoder-decoder 2D segmentation CNN

• ResNet-101 as the encoder branch

• Generated features are projected to 3D and fused to the 3D stream

[5] M. Garbade, J. Sawatzky, A. Richard, and J. Gall. Two stream 3D semantic scene completion. CoRR, abs/1804.03550, 2018
[6] S. Liu, Y. HU, Y. Zeng, Q. Tang, B. Jin, Y. Han, and X. Li. See and think: Disentangling semantic scene completion. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. CesaBianchi, and R. Garnett, editors,
Conference on Neural Information Processing Systems (NeurIPS), pages 263–274. Curran Associates, Inc., 2018

8



One note about previous works
• When projecting 2D data to 3D, resulting volume is sparse

• Song et al. has shown that using F-TSDF to generate dense 3D input volumes 
improves results
• It is easy to apply F-TSDF to occupancy volume because it is binary
• RGB data is not binary!

TSDF F-TSDF

F-TSDF = sign(TSDF) · (1-|TSDF|)
9



Our approach: EdgeNet
• We extract information from RGB data using image edges:

• Easy to get: Canny Edge Detector[7]

• It is possible to apply F-TSDF to image edges (binary data)

[7] J. Canny. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8(6):679–698, Nov 1986
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Our approach
• Preparing data takes time...

• SUNCG dataset contains more than 130K 3D scenes
• To train a single model, each scene is processed several times, according to the number 

of epochs
• F-TSDF calculation is computationally intensive

• So, we preprocess all data, only once!
• F-TSDF is calculated using portable c++ cuda code
• We provide a software interface between cuda and python
• Preprocessing code is independent from the deep learning framework
• Preprocessing also includes calculating an occupancy grid for data balancing:

• occupied voxels inside the room and FOV
• non occupied voxels inside the room and FOV
• all other voxels
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Network architecture
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Training protocol
• Data balancing:

• for each training batch, we randomly initialize a tensor rand with ones and zeroes using the ratio 
r=(2∑occu/∑occl)

• The final weight tensor is w= occu + occl . rand

• Weighted Categorical Cross Entropy Loss:
• Lcce(p, y) =−∑(w . y . log p)

• Train on SUNCG, fine tune on NYU v2
• One Cycle Learning [8]
• SGD optimizer
• Batch size = 3
• training time:

• SUNCG: from 7 days to 4 days
• NYU: from 30 hours to 6 hours

[8] L. N. Smith. A disciplined approach to neural network hyper-parameters: Part 1 - learning rate, batch size, momentum, and weight decay. CoRR , abs/1803.09820, 2018. 13



Datasets
• SUNCG

• 130K+ synthetic 3D scenes rendered from 45K+ human generated house models

• Camera poses are brute force generated, then randomly select according NYU pose 
distribution

• Only depth maps were provided, we generated RGB data from the house models

• Default train/test split is provided

• NYUv2
• Real 3D scenes captured with Kinect

• 795 scenes for training and 654 for testing
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Results

Ablation study on SUNCG test set
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Results

Semantic scene completion results on NYU test set 16



Qualitative results

Image

Ground Truth SSCNet EdgeNet-MF
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Current Semantic Scene Completion Limitations

Regular RGB-D Sensor
Panoramic Image from 
Matterport Camera
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Obstacles to 360o Semantic Scene Completion
• The task is highly memory consuming – a naïve full coverage approach 

may not be trainable with currently available GPUs

• Current 360o datasets are not large enough or not diverse enough to train 
deep 3D CNNs
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Our approach

The 3DCNN is trained using SUNCG and
fine-tuned in NYUDV2

This approach allows to use existing large
and diverse RGB-D datasets for training.
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Our approach

Input Partitioning
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• Input volume: 
• 480 x 144 x 480 voxels

• Voxel size: 0.02m

• coverage: 9.6 x 2.8 x 9.6 m

• 8 partitions, emulating the field of view of a 
standard RGB-D sensor

• The partitions are taken from the sensor 
position, using a 45o step

• We move the point-of-view 1.7m back from 
the original sensor position, to get more 
overlapped coverage 



Our approach

Prediction Ensemble
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• Each partition of the input is processed by 
our CNN, generating 8 predicted volumes

• Overlapping areas are ensembled using 
the sum rule

• Each predicted partition size is 60 x 36 x 
60

• The resulting ensembled volume size is 
120 x 36 x 120



Results on Stanford 2D-3DS Dataset
RGB Image Input Volume Predicted Volume GT
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Results on Stanford 2D-3DS Dataset
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Experiments on Spherical Stereo Images
• Stereo capture using commercial 360o cameras is one realistic approach 

to 360o SSC

• The capture processes is faster compared to Matterport scanning

• However, depth estimation is subject to errors due to occlusions between 
two camera views and correspondence matching errors
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Experiments on Spherical Stereo Images
• The scenes are captured as a vertical stereo image pair

• Dense stereo matching with spherical stereo geometry [7] is used to 
recover depth information

• Proposed a depth map enhancement procedure
• Align the scene using the Manhattan principle

• Apply Canny Edge Detector to extract the most reliable depth estimations

• Use RANSAC to fit a plane over coherent regions with similar colours

[7] Kim, H. and Hilton, A. (2015). Block world reconstruction from spherical 
stereo image pairs. Computer Vision and Image Understanding (CVIU), 
139(C):104–121.
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Results on Spherical Images
RGB Image Input Volume Predicted VolumeOriginal Depth Map Enhanced Depth Map
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Conclusions
• The paper presented a new approach to fuse depth and colour into a CNN 

for semantic scene completion: the use of F-TSDF encoded 3D projected 
edges extracted from RGB images

• We presented a new end-to-end network architecture capable of properly 
aggregating edges and depth

• Experiments showed that both aggregating edges and the new proposed 
architecture have positive impact on semantic scene completion

• Qualitative results show visually perceptible improvements in 3D label 
inferences

• We have achieved improvement over the state-of-the-art result on the 
NYUv2 dataset, or end-to-end approaches

• We developed a faster lightweight training pipeline for the task
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Conclusions
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• We also introduced the task of Semantic Scene Completion from a pair of 
360o image and depth map.

• Our method predicts 3D voxel occupancy and its semantic labels for a 
whole scene from a single point of view

• The method can be applied to various range of images acquired from high-
end sensors like Matterport to off-the-shelf 360o cameras

• Evaluated on the publicly available Stanford 2D-3D-Semantics dataset and 
on a collection of 360o stereo images gathered with off-the-shelf spherical 
cameras.

• Qualitative analysis shows high levels of completion of occluded regions on 
both Matteport and spherical images.


