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Introduced by Song
et al.[1] in 2017

Trained a 3D CNN
that jointly deals with
both completion and

semantic
segmentation

[1] S. Song, F. Yu, A. Zeng, A. X. Chang, M. Sawa, and T. Funkhouser. Semantic Scene Completion from a Single Depth Image. In Conference on Computer Vision

and Pattern Recognition (CVPR), 2017



Previous works

* Depth map only:

 SSCNET: Song et al.[1]
* Typical contracting only 3D CNN with dilated convolutions
* Depth map encoded with F-TSDF
* Weighted softmax loss
* Train on SUNCG, Fine tune on NYU

» Spatial Group Convolutions: Zhang et al.[2]
e U-Shaped 3D CNN
 SGCused in the decoding branch
* No fine tune

* View-Volume Network : Guo and Tong|3]

* Applyied 2D convolutions to the depth maps then projected resulting features to 3D using a projection
layer

* Used a proprietary evaluation protocol

[1] S. Song, F. Yu, A. Zeng, A. X. Chang, M. Sawa, and T. Funkhouser. Semantic Scene Completion from a Single Depth Image. In CVPR, 2017

[2] J. Zhang, H. Zhao, A. Yao, Y. Chen, L. Zhang, and H. Liao. Efficient semantic scene completion network with spatial group convolution. In ECCV, 2018

[3] Y. Guo and X. Tong. View-Volume Network for Semantic Scene Completion from a Single Depth Image. In Proceedings of the Twenty-Seventh International Joint Conference on

Artificial Intelligence, pages 726—732, Stockholm, Sweden,July 2018 6



Previous works

* Depth maps plus RGB:

* Guedes et al.[4]
* 3 channels of RGB data projected to 3D
e Same architecture as SSCNET
* no significant improvement
* Some implementation details:

* Customized Caffe environment, locked to an old version: hard to setup
* Alljob doneinside Caffe layers: GPU overload, time consuming

* Memory intensive: batch size = 1

[4] A. B. S. Guedes, T. E. de Campos, and A. Hilton. Semantic scene completion combining colour and depth: preliminary experiments. CoRR, abs/1802.04735, 2018



Previous works

* Depth map plus 2D segmentation:

 Two stream 3D semantic scene completion: Garbade et al.[5]

e 2D pretrained segmentation CNN and a Fully Connected CRF to generate a 2D segmentation map from
RGB

* Predicted 2D labels are projected to 3D and fused to the 3D branch (no one-hot-encoding)
 TNetFusion: Liu et al.[6]

* depth maps and RGB information as input of an encoder-decoder 2D segmentation CNN

* ResNet-101 as the encoder branch

* Generated features are projected to 3D and fused to the 3D stream

[5] M. Garbade, J. Sawatzky, A. Richard, and J. Gall. Two stream 3D semantic scene completion. CoRR, abs/1804.03550, 2018
[6] S.Liu, Y. HU, Y. Zeng, Q. Tang, B. Jin, Y. Han, and X. Li. See and think: Disentangling semanticscene completion. InS. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. CesaBianchi, and R. Garnett, editors,

Conference on Neural Information Processing Systems (NeurlPS), pages 263—274. Curran Associates, Inc., 2018 :



One note about previous works

* When projecting 2D data to 3D, resulting volume is sparse

* Song et al. has shown that using F-TSDF to generate dense 3D input volumes
improves results
* |t is easy to apply F-TSDF to occupancy volume because it is binary
 RGB datais not binary!
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F-TSDF = sign(TSDF) - (1-[TSDF)
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Our approach: EdgeNet

* We extract information from RGB data using image edges:
e Easy to get: Canny Edge Detector[7]
* It is possible to apply F-TSDF to image edges (binary data)

[7] ). Canny. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8(6):679-698, Nov 1986
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Our approach

* Preparing data takes time...

e SUNCG dataset contains more than 130K 3D scenes

* To train a single model, each scene is processed several times, according to the number
of epochs

e F-TSDF calculation is computationally intensive

* So, we preprocess all data, only once!
* F-TSDF is calculated using portable c++ cuda code
* We provide a software interface between cuda and python
* Preprocessing code is independent from the deep learning framework

* Preprocessing also includes calculating an occupancy grid for data balancing:
e occupied voxels inside the room and FOV
* non occupied voxels inside the room and FOV
* all other voxels
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Network architecture
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Training protocol

e Data balancing:

e for each trainin§ batch, we randomly initialize a tensor rand with ones and zeroes using the ratio
r=(2>occu/>occl)
* The final weight tensor is w= occu + occl -rand

* Weighted Categorical Cross Entropy Loss:
* Lcce(p, y) ==2(w "y logp)

* Train on SUNCG, fine tune on NYU v2
* One Cycle Learning [8]

* SGD optimizer

e Batchsize =3

* training time:
 SUNCG: from 7 days to 4 days
* NYU: from 30 hours to 6 hours

[8] L. N. Smith. Adisciplined approach to neural network hyper-parameters: Part 1 - learning rate, batch size, nomentum, and weight decay. CoRR, abs/1803.09820, 2018.
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DEIENEIR
e SUNCG

* 130K+ synthetic 3D scenes rendered from 45K+ human generated house models

e Camera poses are brute force generated, then randomly select according NYU pose
distribution
* Only depth maps were provided, we generated RGB data from the house models

» Default train/test split is provided

* NYUv2
* Real 3D scenes captured with Kinect
e 795 scenes for training and 654 for testing
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Results

scene completion semantic scene completion (IoU, in percentages)
prec. rec. IoU |ceil. floor wall win. chair bed sofa table tvs furn. objs. avg.
SSCNet[24] 76.3 95.2 73.5 |96.3 84.9 56.8 28.2 21.3 56.0 52.7 33.7 10.9 44.3 254 46.4
SSCNet* 02.7 89.7 83.8 |97.0 94.6 74.3 51.1 43.7 78.2 70.9 49.5 45.2 61.0 51.3 65.2
DCREF [25] - - — 1954 84.3 57.7 24.5 28.2 63.4 55.3 34.5 19.6 45.8 28.7 48.8
VVNetR-120 [9] [90.8 91.7 84.0 [98.4 87.0 61.0 54.8 49.3 83.0 75.5 55.1 43.5 68.8 57.7 66.7
EdgeNet-D 93.1 90.4 84.8 |97.2 94.4 78.4 56.1 50.4 80.5 73.8 54.5 49.8 69.5 59.2 69.5
SNetFuse[!4] |56.7 91.7 53.9 |65.5 60.7 50.3 56.4 26.1 47.3 43.7 30.6 37.2 449 30.0 44.8
TNetFuse[14] [53.9 95.2 52.6 |60.6 57.3 53.2 52.7 27.4 46.8 53.3 28.6 41.1 44.1 29.0 44.9
SSCNet-E 92.8 89.6 83.8 |97.0 94.5 74.6 51.8 43.9 77.0 70.8 49.3 49.2 62.1 52.0 65.7
EdgeNet-EF(Ours) | 93.7 90.3 85.1 [97.2 949 78.6 57.4 49.5 80.5 744 55.8 51.9 70.1 62.5 70.3
EdgeNet-MF(Ours)|93.3 90.6 85.1 |97.2 95.3 78.2 57.5 51.4 80.7 74.1 54.5 52.6 70.3 60.1 70.2
EdgeNet-LF(Ours) |93.0 89.6 83.9 (97.0 94.6 76.4 52.0 44.6 79.8 71.5 48.9 48.3 66.1 55.9 66.8

model

Ablation study on SUNCG test set




Results

scene completion semantic scene completion (IoU, in percentages)

model prec. rec. IoU [ceil. floor wall win. chair bed sofa table tvs furn. objs.

SSCNet[24] 55.6 919 53.2 | 5.8 81.8 19.6 54 129 344 26 136 6.1 94 7.4
EdgeNet-EF(Ours) | 61.9 80.0 53.6 | 9.1 92.9 183 5.7 15.8 40.4 30.7 9.2 3.3 13.7 11.6
EdgeNet-MF(Ours) | 60.7 80.3 52.8 [11.0 92.3 20.5 7.2 16.3 42.8 32.8 10.5 6.0 15.7 11.8
EdgeNet-LF(Ours) | 59.9 80.5 52.3 | 3.2 87.1 199 8.6 154 43.5 323 88 4.3 13.7 10.0

SSCNet[24] 57.0 945 55.1 |15.1 94.7 244 0.0 12.6 32.1 35.0 13.0 7.8 27.1 10.1
EdgeNet-EF(Ours) | 78.1 65.1 55.1 |21.8 95.0 27.3 84 6.8 53.1 38.6 7.5 0.0 30.4 13.3
EdgeNet-MF(Ours)| 76.0 68.3 56.1 |[17.9 94.0 27.8 2.1 9.5 51.8 443 94 3.6 325 12.7
EdgeNet-LF(Ours) | 75.5 67.5 554 |19.8 949 244 57 7.2 50.3 38.8 10.0 0.0 332 12.2

SSCNet[24] 59.3 929 56.6 |15.1 94.6 24.7 10.8 17.3 53.2 459 159 139 31.1 12.6
DCRF[25] - - - |18.1 92.6 27.1 10.8 18.8 54.3 479 17.1 15.1 34.7 13.0
VVNetR-120[9] [69.8 83.1 61.1 [19.3 94.8 28.0 12.2 19.6 57.0 50.5 17.6 11.9 35.6 15.3
Guedes et al. [7] - - 56.6 | - - - - - - -
Garbade er al. *[6] [69.5 82.7 60.7 [12.9 92.5 25.3 20.1 16.1 56.3 43.4 17.2 10.4 33.0 14.3
SNetFuse[ 1 4] 67.6 859 60.7 |[22.2 91.0 28.6 18.2 19.2 56.2 51.2 16.2 12.2 37.0 174
TNetFuse[ | 4] 67.3 858 60.7 [17.3 92.1 28.0 16.6 19.3 57.5 53.8 17.7 18.5 38.4 18.9
EdgeNet-EF(Ours) | 77.0 70.0 57.9 |16.3 95.0 27.9 14.2 17.9 554 50.8 16.5 6.8 37.3 15.3
EdgeNet-MF(Ours) | 79.1 66.6 56.7 (22.4 95.0 29.7 15.5 20.9 54.1 53.0 15.6 149 35.0 14.8
EdgeNet-LF(Ours) | 77.6 69.5 57.9 [20.6 94.9 29.5 9.8 18.1 56.2 50.5 11.4 5.2 359 15.3

Semantic scene completion results on NYU test set



Qualitative results

Ground Truth

SSCNet

EdgeNet-MF
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Current Semantic Scene Completion Limitations
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Obstacles to 360° Semantic Scene Completion

* The task is highly memory consuming — a naive full coverage approach
may not be trainable with currently available GPUs

e Current 360° datasets are not large enough or not diverse enough to train
deep 3D CNNs

)



Our approach
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Our approach

* Input volume:

* 480 x 144 x 480 voxels Input Partitioning
* Voxel size: 0.02m
* coverage: 9.6 x2.8x9.6 m

e 8 partitions, emulating the field of view of a
standard RGB-D sensor

* The partitions are taken from the sensor
position, using a 45° step

* We move the point-of-view 1.7m back from
the original sensor position, to get more
overlapped coverage
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Our approach

* Each partition of the input is processed by

Prediction Ensemble

our CNN, generating 8 predicted volumes

* Overlapping areas are ensembled using
the sum rule

e Each predicted partition size is 60 x 36 x
60

* The resulting ensembled volume size is
120 x 36 x 120
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Results on Stanford 2D-3DS Dataset

RGB Image Input Volume Predicted Volume

[ floor [ wall B window [ chair B table [ sofa furn. [ objects
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Results on Stanford 2D-3DS Dataset

semantic scene completion (IoU, in percentages)

evaluation model
dataset ~ | coverage |ceil. floor wall win. chair bed sofa table tvs furn. objs. avg.

SSCNet

NYU v2 RGB-D | SGC partial
EdgeNet

15.1 94.6 247 10.8 17.3 53.2 459 15.9 13.9 31.1 12.6 30.5
17.5 754 25.8 6.7 15.3 53.8 424 11.2 0.0 33.4 11.8 26.7

23.6 95.0 28.6 12.6 13.1 57.7 51.1 164 9.6 37.5 13.4 32.6

Stanford 2D-3D-S full (360°)

15.6 92.8 50.6 6.6 26.7 - 354 33.6 - 322 154 343
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Experiments on Spherical Stereo Images

 Stereo capture using commercial 360° cameras is one realistic approach
to 360° SSC

* The capture processes is faster compared to Matterport scanning

* However, depth estimation is subject to errors due to occlusions between
two camera views and correspondence matching errors

25



Experiments on Spherical Stereo Images

* The scenes are captured as a vertical stereo image pair

* Dense stereo matching with spherical stereo geometry [7] is used to
recover depth information

* Proposed a depth map enhancement procedure
* Align the scene using the Manhattan principle
e Apply Canny Edge Detector to extract the most reliable depth estimations
e Use RANSAC to fit a plane over coherent regions with similar colours

[7] Kim, H. and Hilton, A. (2015). Block world reconstruction from spherical
stereo image pairs. Computer Vision and Image Understanding (CVIU),
139(C):104-121.
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Results on Spherical Images

RGB Image Original Depth Map Enhanced Depth Map Input Volume  Predicted Volume

[ floor [] wall B window [] chair B table [ sofa B furn. [T objects




Conclusions

* The paper presented a new approach to fuse depth and colour into a CNN
for semantic scene completion: the use of F-TSDF encoded 3D projected
edges extracted from RGB images

* We presented a new end-to-end network architecture capable of properly
aggregating edges and depth

* Experiments showed that both aggregating edges and the new proposed
architecture have positive impact on semantic scene completion

e Qualitative results show visually perceptible improvements in 3D label
inferences

 We have achieved improvement over the state-of-the-art result on the
NYUv2 dataset, or end-to-end approaches

 We developed a faster lightweight training pipeline for the task
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Conclusions

* We also introduced the task of Semantic Scene Completion from a pair of
360° image and depth map.

 Our method predicts 3D voxel occupancy and its semantic labels for a
whole scene from a single point of view

* The method can be applied to various range of images acquired from high-
end sensors like Matterport to off-the-shelf 360° cameras

* Evaluated on the publicly available Stanford 2D-3D-Semantics dataset and
on a collection of 360° stereo images gathered with off-the-shelf spherical
cameras.

* Qualitative analysis shows high levels of completion of occluded regions on
both Matteport and spherical images.
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