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Presentation
Outline

• Introduction

• Motivation

• The Semantic Scene Completion (SSC) task

• Problem statement

• Previous works

• Concrete contributions, so far

• Using 2D edges to improve detection of hard classes

• Extending SSC to 360 degree

• Next steps
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Semantic Scene Completion

Introduced by Song et al.[107] 

in 2017

Trained a 3D CNN that jointly

deals with both completion

and semantic segmentation

[107] Song, S., Yu, F., Zeng, A., Chang, A.X., Savva, M., and Funkhouser, T.: Semantic Scene Completion from a Single Depth Image. In Proceedings of IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR), Honolulu, Hawaii, July 21-26, pp. 190–198, Piscataway, NJ, July 2017. IEEE. 2, 3, 4, 18, 45, 46, 47, 51, 52, 53, 64, 68, 70

5



6

[70] Liu, S., HU, Y., Zeng, Y., Tang, Q., Jin, B., Han, Y., and Li, X.: See and think: Disentangling semantic scene completion. In Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., 
and Garnett, R. (eds.): Procedings of Conference on Neural Information Processing Systems 31 (NIPS), pp. 263–274, Reed Hook, NY, 2018. Curran Associates, Inc. 
http://papers.nips.cc/paper/7310-see-and-think-disentangling-semantic-scene-completion. 2, 4, 45, 47, 52, 53, 58, 59

Qualitative results on NYUv2 dataset from Liu et al. [70]

Problem Statement
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Problem 
Statement

• Two main deficiencies of current 

approaches:

• the RGB part of the RGB-D image is not 

completely explored;

• they are limited to the restricted FOV of depth 

sensors like Kinect
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Image

Ground Truth SSCNet EdgeNet-MF

Improvements on regular SSC Datasets
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RGB Image Input Volume Predicted Volume GT
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360 degree SSC



P
re

v
io

u
s 

W
o
rk

s

14



15

Previous Works
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Depth maps only

• SSCNET: Song et al. [107]
• Seminal paper

• Proposed F-TSDF encoding

• Dilated convolutions to favor the receptive field

• Introduced SUNCG Dataset

[107] Song, S., Yu, F., Zeng, A., Chang, A.X., Savva, M., and Funkhouser, T.: Semantic Scene Completion from a Single Depth 
Image. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, Hawaii, July 21-
26, pp. 190–198, Piscataway, NJ, July 2017. IEEE. 2, 3, 4, 18, 45, 46, 47, 51, 52, 53, 64, 68, 70
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Why volumetric 
encoding is 
important? 
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TSDF

• TSDF: Truncated Signed Distance Function
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F-TSDF
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• F-TSDF: Flipped Truncated Signed Distance Function 

F-TSDF

F-TSDF = sign(TSDF) · (1-|TSDF|)
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Occluded Space
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TSDF
vs

F-TSDF
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• F-TSDF: Flipped Truncated Signed Distance Function 

F-TSDF = sign(TSDF) · (1-|TSDF|)
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Previous Works
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Depth maps only

• Guo and Tong [40]:
• 2D features projected to 3D

[40] Guo, Y. and Tong, X.: View-Volume Network for Semantic Scene Completion from a Single Depth Image. In Proceedings of 
the Twenty-Seventh International Joint Conference on Artificial Intelligence, pp. 726–732, Stockholm, Sweden,
July 2018. International Joint Conferences on Artificial Intelligence Organization, ISBN 978-0-9992411-2-7. 
https://doi.org/10.24963/ijcai.2018/101. 2, 4, 18, 46, 52, 53

https://doi.org/10.24963/ijcai.2018/101
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Previous Works
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Depth maps only

• Guo and Tong [40]:
• 2D features projected to 3D

[40] Guo, Y. and Tong, X.: View-Volume Network for Semantic Scene Completion from a Single Depth Image. In Proceedings of 
the Twenty-Seventh International Joint Conference on Artificial Intelligence, pp. 726–732, Stockholm, Sweden,
July 2018. International Joint Conferences on Artificial Intelligence Organization, ISBN 978-0-9992411-2-7. 
https://doi.org/10.24963/ijcai.2018/101. 2, 4, 18, 46, 52, 53

Neglects the RGB 
channels from the

input data 

https://doi.org/10.24963/ijcai.2018/101
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Previous Works
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Depth maps plus RGB

• Guedes et al.[38]

[38] Guedes, A.B.S., de Campos, T.E., and Hilton, A.: Semantic scene completion combining colour and depth: preliminary 
experiments. In ICCV workshop on 3D Reconstruction Meets Semantics (3DRMS), Venice, Italy, October 2017.
Event webpage: http://trimbot2020.webhosting.rug.nl/events/events-2017/3drms/. Also published at arXiv:1802.04735. 4, 45, 
46, 47, 52, 53
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Previous Works
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Depth maps plus RGB

• Guedes et al.[38]

[38] Guedes, A.B.S., de Campos, T.E., and Hilton, A.: Semantic scene completion combining colour and depth: preliminary 
experiments. In ICCV workshop on 3D Reconstruction Meets Semantics (3DRMS), Venice, Italy, October 2017.
Event webpage: http://trimbot2020.webhosting.rug.nl/events/events-2017/3drms/. Also published at arXiv:1802.04735. 4, 45, 
46, 47, 52, 53

Suffers from RGB 
data sparsity after 
projection to 3D
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Previous Works
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Depth map plus 2D segmentation

• Two stream 3D semantic scene completion: Garbade et 
al.[36]

[36] Garbade, M., Sawatzky, J., Richard, A., and Gall, J.: Two stream 3D semantic scene completion. Tech. Rep. 
arXiv:1804.03550, Cornell University Library, 2018. http://arxiv.org/abs/1804.03550. 4, 45, 47, 52, 53
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Previous Works
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Depth map plus 2D segmentation

• TNetFusion: Liu et al.[70]

[70] Liu, S., HU, Y., Zeng, Y., Tang, Q., Jin, B., Han, Y., and Li, X.: See and think: Disentangling semantic scene completion. In 
Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Garnett, R. (eds.): Procedings of Conference on Neural 
Information Processing Systems 31 (NIPS), pp. 263–274, Reed Hook, NY, 2018. Curran Associates, Inc. 
http://papers.nips.cc/paper/7310-see-and-think-disentangling-semantic-scene-completion. 2, 4, 45, 47, 52, 53, 58, 59
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Previous Works
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Depth map plus 2D segmentation

• TNetFusion: Liu et al.[70]

[70] Liu, S., HU, Y., Zeng, Y., Tang, Q., Jin, B., Han, Y., and Li, X.: See and think: Disentangling semantic scene completion. In 
Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Garnett, R. (eds.): Procedings of Conference on Neural 
Information Processing Systems 31 (NIPS), pp. 263–274, Reed Hook, NY, 2018. Curran Associates, Inc. 
http://papers.nips.cc/paper/7310-see-and-think-disentangling-semantic-scene-completion. 2, 4, 45, 47, 52, 53, 58, 59

Requires a complex 
two step training 

procedure
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Using RGB Edges to 
improve Semantic 
Scene Completion 

from RGB-D Images
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F-TSDF and
the RGB 
Volume

31

• It is possible to apply F-TSDF to the occupancy volume

• However, RGB data is not binary!

F-TSDF
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Our Approach: 
EdgeNet
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• We extract information from RGB data using Canny Edge 
detector before F-TSDF
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Our implementation
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• Offline F-TSDF calculation using portable 
C++ CUDA code

• We provide a software interface between 
CUDA and Python

• Preprocessing code is independent from 
the deep learning framework
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Network Architecture

240x144x240

240x144x240
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Network Architecture
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Network Architecture - Fusion Schemes
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Network Architecture - Fusion Schemes
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Network Architecture - Fusion Schemes
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Network Architecture - Fusion Schemes
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Datasets
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• SUNCG*

• NYUDv2**

*Song et al.[107]

**Silberman et al.[102]
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Training Time
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• Ours

• SUNCG: 4 days

• NYU: 6 hours

• SSCNET

• SUNCG: 7 days

• NYU: 30 hours
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Quantitative Results
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• New state-of-the-art result on SUNCG

• All new aspects of our solution contributed to the 
improvement

• Middle Fusion and Late Fusion schemes presented 
similar results on SUNCG

• Middle Fusion presented better results on NYUDV2



Image

Ground Truth SSCNet EdgeNet-MF

Qualitative Results
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Image

Ground Truth SSCNet EdgeNet-MF

Higher overall accuracy

Qualitative Results
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Image

Ground Truth SSCNet EdgeNet-MF

Hard-to-detect classes

Qualitative Results
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Image

Ground Truth SSCNet EdgeNet-MF

NYU Ground Truth errors

Qualitative Results
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Conclusions
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• A new end-to-end network architecture

• A new RGB enconding strategy

• Visually perceptible improvements

• Improvement over the state-of-the-art result 
on SUNCG

• We surpased other end-to-end approaches on 
NYUv2

• An efficient and lightweight training pipeline for 
the task
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Publication
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[29] Dourado, A., de Campos, T.E., Kim, H., and Hilton, A.: EdgeNet: Semantic scene completion from RGB-D 
images. Tech. Rep. arXiv:1908.02893, Cornell University Library, 2019. http://arxiv.org/abs/1908.02893. 6, 
44, 68

*Accepted for publication in the proceedings of the 25th International Conference on 
Pattern Recognition (ICPR2020) (Capes Qualis A2)

EdgeNet: Sematic Scene
Completion from a Single RGB-D 

Image
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Extending 
Semantic Scene
Completion for 
360O Coverage
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Regular RGB-D Sensor
Panoramic Image from 
Matterport Camera
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Current Semantic Scene Completion Limitations



The 3DCNN is trained using SUNCG and
fine-tuned in NYUDV2

This approach allows to use existing large
and diverse RGB-D datasets for training.
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RGB Image Input Volume Predicted Volume GT
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Results on Stanford 2D-3DS Dataset
GT Pred.

https://p3d.in/ytMnK
https://p3d.in/52pJG
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Experiments on 
Spherical Stereo 

Images
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• Stereo capture using commercial 360O cameras is 
one realistic approach to 360O SSC

• faster compared to Matterport scanning

• depth estimation is subject to errors due to occlusions 
between two camera views and correspondence matching 
errors
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Our approach
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• Vertical stereo setup

• Dense stereo matching with spherical 
stereo geometry [56]

• Depth map enhancement procedure:

• Align the scene (Manhattan principle)

• Apply Canny Edge Detector

• RANSAC to fit a plane over coherent 
regions with similar colors

[56] Kim, H. and Hilton, A.: Block world reconstruction from spherical stereo image pairs. Computer Vision and Image 
Understanding (CVIU), 139(C):104–121, Oct. 2015, ISSN 1077-3142. http://dx.doi.org/10.1016/j.cviu.2015.04.001. 17, 69



RGB Image Input Volume Predicted VolumeOriginal Depth Map Enhanced Depth Map

Results on Spherical Images
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Conclusions

56

• We introduced the 360o Semantic Scene 
Completion

• Works with high-end sensors or off-the-shelf 
360o cameras

• Segmentation accuracy equivalent to limited 
view solutions

• High levels of completion of occluded regions
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Publication
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[31] Dourado, A., Kim, H., de Campos, T.E., and Hilton, A.: Semantic scene completion from a single 360-degree image and 
depth map. In Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics 
Theory and Applications (VISIGRAPP 2020), vol. 5: VISAPP, pp. 36–46. 7, 61

*Published in the proceedings of the 15th International Conference on Computer 
Vision Theory and Applications (VISAPP2020) (Qualis A1)

Sematic Scene Completion from a 
Single 360O Image and Depth

Map
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Application Paper
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https://www.cvssp.org/hkim/paper/CVST2020/

Immersive Audio-Visual Scene
Reproduction using Semantic

Scene Reconstruction from
360O Cameras

https://www.cvssp.org/hkim/paper/CVST2020/
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Multi modal 
Semantic Scene 

Completion
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Multi modal 
architecture

3D 
Projection

2D Predictions

One Hot 
Encoding

FTSD-F

3D 
Projection

3D 3D 3D3D Binary
Label Surfaces

2D CNN

3D CNN

3D Predictions



2D multimodal 
network 
architecture

Pretrained ResNet 101 encoder

3D Predictions

640 X 480, 3CH

320 X 240, 64CH

160 X 120, 256CH

80 X 60, 512CH

40 X 30, 1024CH

20 X 15, 2048CH

ResBlock 1

ResBlock 2

ResBlock 3

ResBlock 4

ResBlock 5 Conv2DTranspose Block 1

ResBlock 1

ResBlock 2

ResBlock 3

ResBlock 4

ResBlock 5

ResBlock 1

ResBlock 2

ResBlock 3

ResBlock 4

ResBlock 5

Conv2DTranspose Block 2

Conv2DTranspose Block 3

Conv2DTranspose Block 4

Conv2DTranspose Block 5

Conv2D

Softmax
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Qualitative
results, so far

RGB Ground Truth Predictions
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Thank you!

aloisio.dourado.bh@gmail.com



Results – ablation study on SUNCG
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Effect of our efficient training pipeline

Results – ablation study on SUNCG
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Effect of our u-shaped architecture, with 3D dilated residial modules

Results – ablation study on SUNCG
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Effect of adding edges

Results – ablation study on SUNCG
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Effect of adding edges

Results – ablation study on SUNCG
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Effect of different fusion strategies
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Results on NYU-DV2



Results on NYU-DV2
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Input Partitioning
• Input volume: 

• 480 x 144 x 480 voxels

• Voxel size: 0.02m

• coverage: 9.6 x 2.8 x 9.6 m

• 8 partitions, emulating the field of view of a 
standard RGB-D sensor

• The partitions are taken from the sensor 
position, using a 45o step

• We move the point-of-view 1.7m back from 
the original sensor position, to get more 
overlapped coverage 

Our approach
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Prediction Ensemble
• Each partition of the input is processed by 

our CNN, generating 8 predicted volumes

• Overlapping areas are ensembled using 
the sum rule

• Each predicted partition size is 60 x 36 x 
60

• The resulting ensembled volume size is 
120 x 36 x 120

Our approach
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Results on Stanford 2D-3DS Dataset


