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Presentation Introduction

Outline « Motivation

* The Semantic Scene Completion (SSC) task

* Problem statement

Previous works

Concrete contributions, so far

e Using 2D edges to improve detection of hard classes
* Extending SSC to 360 degree
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Semantic Scene Completion
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[107] Song, S., Yu, F, Zeng, A., Chang, A.X., Savva, M., and Funkhouser, T.: Semantic Scene Completion from a Single Depth Image. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Honolulu, Hawaii, July 21-26, pp. 190-198, Piscataway, NJ, July 2017. IEEE. 2, 3, 4, 18, 45, 46, 47, 51, 52, 53, 64, 68, 70



Problem Statement
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Qualitative results on NYUv2 dataset from Liu et al. [70]

[70] Liu, S., HU, Y., Zeng, Y., Tang, Q., Jin, B., Han, Y., and Li, X.: See and think: Disentangling semantic scene completion. In Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N.,

and Garnett, R. (eds.): Procedings of Conference on Neural Information Processing Systems 31 (NIPS), pp. 263—-274, Reed Hook, NY, 2018. Curran Associates, Inc.

http://papers.nips.cc/paper/7310-see-and-think-disentangling-semantic-scene-completion. 2, 4, 45, 47, 52, 53, 58, 59
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Problem e Two main deficiencies of current

Statement approaches:
* the RGB part of the RGB-D image is not
completely explored;

e they are limited to the restricted FOV of depth
sensors like Kinect




Improvements on regular SSC Datasets

Ground Truth SSCNet

EdgeNet-MF
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360 degree SSC
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Previous Works

Depth maps only
 SSCNET: Song et al. [107]

e Seminal paper

* Proposed F-TSDF encoding

* Dilated convolutions to favor the receptive field
* Introduced SUNCG Dataset

conv(32,1,1,1) conv(32,1,1,1)

/ / \ / \ Prediction
= 1 B B == = empty
b o | o e = = T st el I floor
ol b Rl R Pl wall
g 3 3 E g3 33 X & d ceiling
. PR B L
z z2 2 LA 2 2 =2 Z chair
S ol o &8 & © =1=1:
= SV SSlTs Bl |8l =

Receptive field: 0.02m 0.14m 03m 0.66m 098m 1.62m 2.26m 2.26m

[107] Song, S., Yu, F, Zeng, A., Chang, A.X., Savva, M., and Funkhouser, T.: Semantic Scene Completion from a Single Depth
Image. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, Hawaii, July 21-
26, pp. 190-198, Piscataway, NJ, July 2017. IEEE. 2, 3, 4, 18, 45, 46, 47, 51, 52, 53, 64, 68, 70
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Why volumetric
encoding is
Important?
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Why volumetric
encoding is
Important?
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Why volumetric
encoding is
Important?

18



Why volumetric
encoding is
Important?
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* TSDF: Truncated Signed Distance Function
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F-TSDF

F-TSDF

Distance to the closest
occupied voxel
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Occluded Space

Visible Space

* F-TSDF: Flipped Truncated Signed Distance Function

F-TSDF = sign(TSDF) - (1-[TSDF)
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TSDF
VS
F-TSDF

* F-TSDF: Flipped Truncated Signed Distance Function
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F-TSDF = sign(TSDF) - (1-[TSDF)
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Previous Works

Depth maps only

* Guo and Tong [40]:
* 2D features projected to 3D

&

Feature Projection
\ 4
l

120x72x120 60x36x60 60x36x60

640x480 320x240

(b) VVNet-120 Structure Backbone .

[40] Guo, Y. and Tong, X.: View-Volume Network for Semantic Scene Completion from a Single Depth Image. In Proceedings of
the Twenty-Seventh International Joint Conference on Artificial Intelligence, pp. 726—732, Stockholm, Sweden,
July 2018. International Joint Conferences on Artificial Intelligence Organization, ISBN 978-0-9992411-2-7.

https://doi.org/10.24963/ijcai.2018/101. 2, 4, 18, 46, 52, 53
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Previous Works

Depth maps only

* Guo and Tong [40]:
* 2D features projected to 3D

channels from the
input data

Neglects the RGB I

60x36x60

640x480 320x24l
Backbone

[40] Guo, Y. and Tong, X.: View-Volume Network for Semantic Scene Completion from a Single Depth Image. In Proceedings of
the Twenty-Seventh International Joint Conference on Artificial Intelligence, pp. 726—732, Stockholm, Sweden,
July 2018. International Joint Conferences on Artificial Intelligence Organization, ISBN 978-0-9992411-2-7.

https://doi.org/10.24963/ijcai.2018/101. 2, 4, 18, 46, 52, 53
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Previous Works

Depth maps plus RGB
* Guedes et al.[38]

dilated (64,31,2) ~
dilated (64,31,2)
dilated (64,31,2) ~
dilated (64,31,2)

/

[38] Guedes, A.B.S., de Campos, T.E., and Hilton, A.: Semantic scene completion combining colour and depth: preliminary
experiments. In ICCV workshop on 3D Reconstruction Meets Semantics (3DRMS), Venice, Italy, October 2017.
Event webpage: http://trimbot2020.webhosting.rug.nl/events/events-2017/3drms/. Also published at arXiv:1802.04735. 4, 45,

46, 47, 52, 53 25



Previous Works

Depth maps plus RGB
* Guedes et al.[38]

Q

 Suffers from RGB 44§
data sparsity after 3
projection to 3D

~

conv (16,72,1)

conv(1281,11)

dilated (64,3,1,2)

dilated (64,3,1,2)

conv(1281,1,1)
conv (12,1,1,1)

[38] Guedes, A.B.S., de Campos, T.E., and Hilton, A.: Semantic scene completion combining colour and depth: preliminary
experiments. In ICCV workshop on 3D Reconstruction Meets Semantics (3DRMS), Venice, Italy, October 2017.

Event webpage: http://trimbot2020.webhosting.rug.nl/events/events-2017/3drms/. Also published at arXiv:1802.04735. 4, 45,
46, 47,52, 53
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Previous Works Depth map plus 2D segmentation

* Two stream 3D semantic scene completion: Garbade et
al.[36]

Depth RGB
2D
Binary Sematic
Voxel Mask Seg.
Semantic
Volume
3-channel
embedding

\

Color
Volume

v

[36] Garbade, M., Sawatzky, J., Richard, A., and Gall, J.: Two stream 3D semantic scene completion. Tech. Rep.
arXiv:1804.03550, Cornell University Library, 2018. http://arxiv.org/abs/1804.03550. 4, 45, 47, 52, 53




Previous Works Depth map plus 2D segmentation
e TNetFusion: Liu et al.[70]

SNet é,. a8 TNet
(Color Branch) 0 C".m}\ (Color Branch) 2 Z
I e [=] L=
8 O O
=
S| B>
SNet B TNet - -
(Depth Branch) R atﬂi (Depth Branch)

[70] Liu, S., HU, Y, Zeng, Y., Tang, Q., Jin, B., Han, Y., and Li, X.: See and think: Disentangling semantic scene completion. In
Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Garnett, R. (eds.): Procedings of Conference on Neural
Information Processing Systems 31 (NIPS), pp. 263—-274, Reed Hook, NY, 2018. Curran Associates, Inc.
http://papers.nips.cc/paper/7310-see-and-think-disentangling-semantic-scene-completion. 2, 4, 45, 47, 52, 53, 58, 59




Previous Works Depth map plus 2D segmentation
e TNetFusion: Liu et al.[70]

SNet X
o Y TNet
(Color Branch) <tion  (Color Branch)

Y -

RGB

1x1 Conv
1x1 Conv

e REquires a complex
PepthBra w0 step training
procedure

[70] Liu, S., HU, Y, Zeng, Y., Tang, Q., Jin, B., Han, Y., and Li, X.: See and think: Disentangling semantic scene completion. In
Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Garnett, R. (eds.): Procedings of Conference on Neural
Information Processing Systems 31 (NIPS), pp. 263—-274, Reed Hook, NY, 2018. Curran Associates, Inc.
http://papers.nips.cc/paper/7310-see-and-think-disentangling-semantic-scene-completion. 2, 4, 45, 47, 52, 53, 58, 59




Using RGB Edges to
Improve Semantic
Scene Completion

from RGB-D Images

EdgeNet

30



F-TSDF and
the RGB
Volume

* |tis possible to apply F-TSDF to the occupancy volume

 However, RGB data is not binary!

31



Our Approach:
EdgeNet

* We extract information from RGB data using Canny Edge
detector before F-TSDF
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Our implementation * Offline F-TSDF calculation using portable
C++ CUDA code

* We provide a software interface between
CUDA and Python

* Preprocessing code is independent from
the deep learning framework




Network Architecture
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Network Architecture
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Input K
Depth ~ s
F-TSDFT G
240x144x200 2

240x144x200
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3 Concat.
240x144x200 = a =
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UpConv3D(32,2.2)

-Conv3D(channe|s.size.strides) R

~ ResNet module (channels, size, strides, dilation=1)

.Maxpooling3D(size, strides)

.Dilated ResNet module (channels, size, strides,dilation=2)
Conv3DTranspose(channels, size, strides) 15x9x15
Conv3D(channels, size, strides) + Softmax + Categorical Cross Entropy Loss

UpConvaD(64,2,2)

input

output

BatchNormalization
RelLU
Conv3D(ch,sz,st,dil)
BatchNormalization
RelLU
Conv3D(ch,sz,st,dil)

« ResNet module with optional dilation



Network Architecture - Fusion Schemes
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Network Architecture - Fusion Schemes

Early Fusion Scheme
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Network Architecture - Fusion Schemes
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Network Architecture - Fusion Schemes

Late Fusion Scheme
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=64
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Datasets

*Song et al.[107]
**Silberman et al.[102]

* SUNCG*

(a) SUNCG dataset (b) 3D Scene (c) Synthetic depth and volumetric ground truth

* NYUDv2**




Training Time

* Qurs
* SUNCG: 4 days
e NYU: 6 hours

e SSCNET
 SUNCG: 7 days
e NYU: 30 hours



Quantitative Results New state-of-the-artresult on SUNCG

All new aspects of our solution contributed to the
improvement

Middle Fusion and Late Fusion schemes presented
similar results on SUNCG

Middle Fusion presented better results on NYUDV?2




Qualitative Results

Ground Truth

SSCNet

EdgeNet-MF
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Qualitative Results

Ground Truth

SSCNet

Higher overall accuracy

EdgeNet-MF
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Qualitative Results

Ground Truth

SSCNet

Hard-to-detect classes

EdgeNet-MF
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Qualitative Results

Ground Truth

SSCNet

NYU Ground Truth errors

EdgeNet-MF
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Conclusions| ¢ Anew end-to-end network architecture
* A new RGB enconding strategy
* Visually perceptible improvements

* Improvement over the state-of-the-artresult
on SUNCG

 We surpased other end-to-end approaches on
NYUv2

* An efficient and lightweight training pipeline for
the task
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EdgeNet: Sematic Scene
g .
A Semantic sy icting The term semantic scene completion was introduced by
[ o a 3 esed volumetric vecupancy with Song er af. (7], who showed that scene completion and
Completion from a Single RGB-D i et 4 S Lt 2, L 1 i st G
jointly deals with both tasks can lead to better results. Their

end meural network srchiecture that fuses i
.|.,,.|., 4 RGE, explicitly representing RGB edgs D space.  approach only uses depth information, ng all information
Previous works on this task used either depth-only wr depth  from RGB channels. Colour information is expected 1o be
A *:el! gemerated by yseful to distinguish objects that approximately share the same
D valume, requiring a oy, 3D space. <. are hard to be distinguishe

fwo step fraining process. Our la;E\-t representation encodes  PIENC iR the 3D spa ""f tinss, arc board ko ‘f‘ tinguis h.‘j
colour information in 3D space using edge detection and fipped y amples of such instances are flat objects
cd to the wall, such as postcrs, paintings and flat TVs.

truncated signed distance, which improves m..z.m‘ completion
scores. especially in hurd o detect le We Some types of closed doors and windows are also problematic
for depth-only approaches

simpler and a more m..,..m mally Hickent tra ing pipeline

than eompeting approad colour information from on

compl
hods project colour information to 3D in a naive
w0 a problem of daty sparsity in the voelised
The ability of reasoning about scenes in 3D is @ nawral g vy i fed 1o the 3D CNN [8], while thers uses RGE
task for humans. but remains a challenging problem in Com-  jnformation 1o train & 2D scgmentation network and then
pur Vision [1]. Knowing the complete 3D geometry of & project gencraed features 1o 3D, requiring & complex two step
md the semantic labels of cach 3D voxel has MANY  yryining process [9], [10]
pr.um.ll applications. like robotics and autonomous Ravigation
in indoor environments, surveillance, assistive computing and
augmented lity
Currently available low cost RGB-D data
i n and cannot handle occlusion
amang ohjects in the scene. For instance, in the scene depicted
on the left part of Figure 1. parts of the wall, floor and furniture
are occluded by the bed. There is also self-occlusion: the
interior of the bed. its sides and its rear surfaces are hidden
by the visible surfa
Given a partial
nage. the

m sCores.

L. INTRODUCTION

Our work focuses on enhancing semantic scene segmenta-
tion scores using information from both depth and colour of
RGB-IY images in an end-to-end manner. In order to address
the RGB data sparsity issue, we introduce a new straf
encoding information extracted from RGB image in 3D spac
We also present o new end-io-end 3D CNN architecture to
combine and represent the features from colour and depth.
Comprehensive experiments are conducied 1o evaluate the
main aspects of the proposed solution. Results show that our
fusion approach can enhance results of depth-only solutions
D scene model acquired from a single g gy et achieves equivalent performance o current

o s to : ; -
o al of scene ““‘T’L‘"“";‘ 10 ZeNCrale gy of the-art fusion approach. with a much simpler training
3D velumetric tation whery protocal

is labelled as occupied by some object or free space. For
occupied voxels. the goal of semantic scene completion is 1o

ach voxel

To summarise, our main contributions are:

assign a laby e to which class of object it belongs, o end-to-end CNN architecture that fuses
as illustrated on the right par of Figure 1. depth, R information to achicve statc-of-the-art
Hefore 2018, most of the work on scene reasoning oaly performance in semantic scene completion with a much

partially addressees this problem. A number of approac
only infer labels of the visible surfaces [2]. [3], [4], while
athers only consider completing the oceluded pant of the seene, signed-distance functions which improves performance
without semantic labelling [3]. Another line of work focu and unifies data agregation for semantic scene completion
on single ohjects. without the scene context [6]. from RGBI.

simpler approach,
a new 3D volumetric edge representation using fipped

*Accepted for publication in the proceedings of the 25t International Conference on
Pattern Recognition (ICPR2020) (Capes Qualis A2)

[29] Dourado, A., de Campos, T.E., Kim, H., and Hilton, A.: EdgeNet: Semantic scene completion from RGB-D
images. Tech. Rep. arXiv:1908.02893, Cornell University Library, 2019. http://arxiv.org/abs/1908.02893. 6,
44,68




3060° SCC

Extending
Semantic Scene
Completion for
360° Coverage
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Current Semantic Scene Completion Limitations

Regular RGB-D Sensor

Panoramic Image from
Matterport Camera
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Our approach

3DCNN

3DCNN

3DCNN

3DCNN

3DCNN

3DCNN

3DCNN

3DCNN

oo oTToT

The 3DCNN is trained using SUNCG and
fine-tuned in NYUDV2 and diverse RGB-D datasets for training.

AW L WA W WL LW

J

\
9|quWasu3 uolildipadd

This approach allows to use existing large
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Results on Stanford 2D-3DS Dataset

RGB Image Input Volume Predicted Volume

[0 floor [ wall Bl window [ chair B table [ sofa B furn. [J objects

GT

GT

Pred.
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https://p3d.in/52pJG

Experiments on
Spherical Stereo
Images

 Stereo capture using commercial 360° cameras is
one realistic approach to 360° SSC

 faster compared to Matterport scanning

» depth estimation is subject to errors due to occlusions
between two camera views and correspondence matching
errors

53



Our approach

* Vertical stereo setup

* Dense stereo matching with spherical
stereo geometry [56]

* Depth map enhancement procedure:
* Align the scene (Manhattan principle)
* Apply Canny Edge Detector

« RANSACto fit a plane over coherent
regions with similar colors

[56] Kim, H. and Hilton, A.: Block world reconstruction from spherical stereo image pairs. Computer Vision and Image
Understanding (CVIU), 139(C):104-121, Oct. 2015, ISSN 1077-3142. http://dx.doi.org/10.1016/j.cviu.2015.04.001. 17, 69
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Results on Spherical Images

RGB Image

Original Depth Map Enhanced Depth Map Input Volume

[] floor [ wall B window [] chair M table [ sofa

B furn. [ objects

Predicted Volume
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We introduced the 360° Semantic Scene
Completion

Conclusions

Works with high-end sensors or off-the-shelf
360° cameras

Segmentation accuracy equivalent to limited
view solutions

High levels of completion of occluded regions




Publication |

Semantic Scene Completion from a
Single 360-Degree Image and Depth Map
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Application Paper

Immersive Audio-Visual Scene
Reproduction using Semantic
Scene Reconstruction from
360° Cameras
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Multi modal
Semantic Scene
Completion

RGB

Depth Map

Multi modal
CNN

XYZ Encoding
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Multi modal
architecture
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2D multimodal
network
architecture
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Qualitative
results, so far

RGB

Ground Truth

Predictions
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Thank you!



Results — ablation study on SUNCG

input

model

scene completion

semantic scene completion (IoU, in percentages)

prec. rec. IoU |ceil. floor wall win. chair bed sofa table tvs furn. objs. avg.

SSCNet[24] 76.3 95.2 73.5 |96.3 84.9 56.8 28.2 21.3 56.0 52.7 33.7 10.9 44.3 25.4 46.4
SSCNet* 92.7 89.7 83.8 |197.0 94.6 74.3 51.1 43.7 78.2 70.9 49.5 45.2 61.0 51.3 65.2

d DCREF [25] - - — 195.4 84.3 57.7 24.5 28.2 63.4 55.3 34.5 19.6 45.8 28.7 48.8
VVNetR-120 [9] [90.8 91.7 84.0 [98.4 87.0 61.0 54.8 49.3 83.0 75.5 55.1 43.5 68.8 57.7 66.7
EdgeNet-D 93.1 90.4 84.8 |197.2 944 78.4 56.1 50.4 80.5 73.8 54.5 49.8 69.5 59.2 69.5

dis SNetFuse[14] |56.7 91.7 53.9 655 60.7 50.3 56.4 26.1 47.3 43.7 30.6 37.2 449 30.0 44.8
TNetFuse[14] [53.9 95.2 52.6 |60.6 57.3 53.2 52.7 27.4 46.8 53.3 28.6 41.1 44.1 29.0 44.9
SSCNet-E 02.8 89.6 83.8 |197.0 94.5 74.6 51.8 43.9 77.0 70.8 49.3 49.2 62.1 52.0 65.7

dee EdgeNet-EF(Ours) | 93.7 90.3 85.1 [97.2 949 78.6 57.4 49.5 80.5 744 55.8 51.9 70.1 62.5 70.3
EdgeNet-MF(Ours) | 93.3 90.6 85.1 |97.2 95.3 78.2 57.5 51.4 80.7 74.1 54.5 52.6 70.3 60.1 70.2
EdgeNet-LF(Ours) |93.0 89.6 83.9 (97.0 94.6 76.4 52.0 44.6 79.8 71.5 48.9 48.3 66.1 55.9 66.8
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Results — ablation study on SUNCG

input

model

scene completion

semantic scene completion (IoU, in percentages)

]

) prec. rec. JoU |ceil. floor wall win. chair bed sofa table tvs furn. objs. avg.
SSCNet[24] 76.3 95.2 73.5 196.3 84.9 56.8 28.2 21.3 56.0 52.7 33.7 10.9 44.3 25.4 464
SSCNet* 02.7 89.7 83.8 197.0 94.6 74.3 51.1 43.7 78.2 70.9 49.5 45.2 61.0 51.3 65.2

d DCRKE | Z5] — — — [93.4 84.5 D/./ 24D 28.2 03.4 3J.3 340 19.0 45.0 Ls./ 48.6
VVNetR-120[9] [90.8 91.7 84.0 [98.4 87.0 61.0 54.8 49.3 83.0 75.5 55.1 43.5 68.8 57.7 66.7
EdgeNet-D 93.1 904 84.8 |97.2 944 78.4 56.1 50.4 80.5 73.8 54.5 49.8 69.5 59.2 69.5

dis SNetFuse[ 4] 56.7 91.7 53.9 655 60.7 50.3 56.4 26.1 47.3 43.7 30.6 37.2 449 30.0 44.8
TNetFuse[ 4] 53.9 95.2 52.6 |160.6 57.3 53.2 52.7 274 46.8 53.3 28.6 41.1 44.1 29.0 44.9
SSCNet-E 02.8 89.6 83.8 197.0 94.5 74.6 51.8 439 77.0 70.8 49.3 49.2 62.1 52.0 65.7

dee EdgeNet-EF(Ours) | 93.7 90.3 85.1 [97.2 949 78.6 57.4 49.5 80.5 744 55.8 51.9 70.1 62.5 70.3
EdgeNet-MF(Ours)|93.3 90.6 85.1 |97.2 95.3 78.2 57.5 51.4 80.7 74.1 54.5 52.6 70.3 60.1 70.2
EdgeNet-LF(Ours) | 93.0 89.6 83.9 [97.0 94.6 76.4 52.0 44.6 79.8 71.5 48.9 48.3 66.1 55.9 66.8

Effect of our efficient training pipeline
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Results — ablation study on SUNCG

input model scene completion semantic scene completion (IoU, in percentages)
prec. rec. IoU |ceil. floor wall win. chair bed sofa table tvs furn. objs. avg.
SSCNet[24] 76.3 95.2 73.5 196.3 84.9 56.8 28.2 21.3 56.0 52.7 33.7 10.9 44.3 25.4 46.4
SSCNet* 92.7 89.7 83.8 197.0 94.6 74.3 51.1 43.7 78.2 70.9 49.5 45.2 61.0 51.3 65.2
d DCREF [25] - - — 195.4 84.3 57.7 24.5 28.2 63.4 55.3 34.5 19.6 45.8 28.7 48.8
VVNetR-120 [9] [90.8 91.7 84.0 [98.4 87.0 61.0 54.8 49.3 83.0 75.5 55.1 43.5 68.8 57.7 66.7
EdgeNet-D 93.1 90.4 84.8 |197.2 944 78.4 56.1 50.4 80.5 73.8 54.5 49.8 69.5 59.2 69.5
dis SNetFuse[!4] [56.7 91.7 53.9 |65.5 60.7 50.3 56.4 26.1 47.3 43.7 30.6 37.2 44.9 30.0 44.8
TNetFuse[14] [53.9 95.2 52.6 |60.6 57.3 53.2 52.7 27.4 46.8 53.3 28.6 41.1 44.1 29.0 44.9
SSCNet-E 02.8 89.6 83.8 |197.0 94.5 74.6 51.8 43.9 77.0 70.8 49.3 49.2 62.1 52.0 65.7
dee EdgeNet-EF(Ours) | 93.7 90.3 85.1 (97.2 94.9 78.6 57.4 49.5 80.5 744 55.8 51.9 70.1 62.5 70.3
EdgeNet-MF(Ours) | 93.3 90.6 85.1 |97.2 95.3 78.2 57.5 51.4 80.7 74.1 54.5 52.6 70.3 60.1 70.2
EdgeNet-LF(Ours) |93.0 89.6 83.9 (97.0 94.6 76.4 52.0 44.6 79.8 71.5 48.9 48.3 66.1 55.9 66.8

Effect of our u-shaped architecture, with 3D dilated residial modules
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Results — ablation study on SUNCG

input model scene completion semantic scene completion (IoU, in percentages)

prec. rec. IoU |ceil. floor wall win. chair bed sofa table tvs furn. objs. avg.

SSCNet[24] 76.3 95.2 73.5 |96.3 84.9 56.8 28.2 21.3 56.0 52.7 33.7 10.9 44.3 254 46.4
SSCNet* 92.7 89.7 83.8 |97.0 94.6 74.3 51.1 43.7 78.2 70.9 49.5 45.2 61.0 51.3 65.2

d DCREF [25] - - — 195.4 84.3 57.7 24.5 28.2 63.4 55.3 34.5 19.6 45.8 28.7 48.8
VVNetR-120 [9] [90.8 91.7 84.0 |98.4 87.0 61.0 54.8 49.3 83.0 75.5 55.1 43.5 68.8 57.7 667
EdgeNet-D 93.1 90.4 84.8 (97.2 944 78.4 56.1 50.4 80.5 73.8 54.5 49.8 69.5 59.2(69.5

dis SNetFuse[!4] [56.7 91.7 53.9 |65.5 60.7 50.3 56.4 26.1 47.3 43.7 30.6 37.2 44.9 30.0 4%
TNetFuse[14] [53.9 95.2 52.6 |60.6 57.3 53.2 52.7 27.4 46.8 53.3 28.6 41.1 44.1 29.0 44.9
SSCNet-E 902.8 89.6 83.8 197.0 94.5 74.6 51.8 43.9 77.0 70.8 49.3 49.2 62.1 52.0 3.7
dre EdgeNet-EF(Ours) [93.7 90.3 85.1 [97.2 94.9 78.6 57.4 49.5 80.5 74.4 55.8 51.9 70.1 62.5(70.3)
EdgeNet-MF(Ours)|93.3 90.6 85.1 |97.2 95.3 78.2 57.5 51.4 80.7 74.1 54.5 52.6 70.3 60.1 7672
EdgeNet-LF(Ours) |93.0 89.6 83.9 (97.0 94.6 76.4 52.0 44.6 79.8 71.5 48.9 48.3 66.1 55.9 66.8

Effect of adding edges
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Results — ablation study on SUNCG

input

model

scene completion

semantic scene completion (IoU, in percentages)

prec. rec. IoU |ceil. floor wall win. chair bed sofa table tvs furn. objs. avg.

SSCNet[24] [76.3 95.2 73.5 [96.3 84.9 56.8 28.2 21.3 56.0 52.7 33.7 10.9 44.3 25.4 46.4
SSCNet* 92.7 89.7 83.8 [97.0 94.6 74.3 51.1 43.7 78.2 70.9 49.5 45.2 61.0 51.3 65.2

d DCRF [25] — -  — |95.4 84.3 57.7 24.5 282 63.4 553 34.5 19.6 45.8 28.7 48.8
VVNetR-120 [9] [90.8 91.7 84.0 |98.4 87.0 61.0 54.8 49.3 83.0 75.5 55.1 43.5 68.8 57.7 667
EdgeNet-D 93.1 90.4 84.8 [97.2 94.4 78.4(56.1)50.4 80.5 73.8 54.5(49.8)69.5(59.2)(69.5

qpe | SNetFuse[14] 156.7 91.7 539 {65.5 60.7 50.3 564 26.1 47.3 43.7 30.6 372 44.9 3070 4%
TNetFuse[14] |53.9 95.2 52.6 [60.6 57.3 53.2 52.7 274 46.8 53.3 28.6 41.1 44.1 29.0 44.9
SSCNet-E 92.8 89.6 83.8 [97.0 94.5 74.6 51.8 43.9 77.0 70.8 49.3 492 62.1 520 657
dre EdgeNet-EF(Ours) [93.7 90.3 85.1 [97.2 94.9 78.6(57.4) 49.5 80.5 74.4 55.8(51.9)70.1(62.5(70.3)
EdgeNet-MF(Ours)|93.3 90.6 85.1 (97.2 95.3 78.2 57.5 51.4 80.7 74.1 54.5 5276 70.3 6071 702
EdgeNet-LF(Ours) [93.0 89.6 83.9 (97.0 94.6 76.4 52.0 44.6 79.8 71.5 48.9 48.3 66.1 55.9 66.8

Effect of adding edges
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Results on NYU-DV?2

input

model

scene completion

semantic scene completion (IoU, in percentages)

prec. rec. IoU |ceil. floor wall win. chair bed sofa table tvs furn. objs. avg.

SSCNet[24] 76.3 95.2 73.5 |96.3 84.9 56.8 28.2 21.3 56.0 52.7 33.7 10.9 44.3 25.4 46.4
SSCNet* 92.7 89.7 83.8 |197.0 94.6 74.3 51.1 43.7 78.2 70.9 49.5 45.2 61.0 51.3 65.2

d DCREF [25] - - — 195.4 84.3 57.7 24.5 28.2 63.4 55.3 34.5 19.6 45.8 28.7 48.8
VVNetR-120 [9] [90.8 91.7 84.0 [98.4 87.0 61.0 54.8 49.3 83.0 75.5 55.1 43.5 68.8 57.7 66.7
EdgeNet-D 93.1 90.4 84.8 |197.2 944 78.4 56.1 50.4 80.5 73.8 54.5 49.8 69.5 59.2 69.5

dis SNetFuse[14] |56.7 91.7 53.9 655 60.7 50.3 56.4 26.1 47.3 43.7 30.6 37.2 449 30.0 44.8
TNetFuse[14] [53.9 95.2 52.6 |60.6 57.3 53.2 52.7 27.4 46.8 53.3 28.6 41.1 44.1 29.0 44.9
SSCNet-E 02.8 89.6 83.8 197.0 94.5 74.6 51.8 43.9 77.0 70.8 49.3 49.2 62.1 52.0 65.7

dee (EdgeNet-EF(Ours) | 93.7 90.3 85.1 {97.2 94.9 78.6 57.4 49.5 80.5 74.4 55.8 51.9 70.1 62.5 70.3
EdgeNet-MF(Ours) | 93.3 90.6 85.1 |97.2 95.3 78.2 57.5 51.4 80.7 74.1 54.5 52.6 70.3 60.1 70.2

EdgeNet-LF(Ours)

93.0 89.6

83.9

97.0 94.6 76.4 52.0

44.6

79.8 71.5

Effect of different fusion strategies

48.9 48.3 66.1

55.9 66.8
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Results on NYU-DV?2

scene completion

semantic scene completion (IoU, in percentages)

train - nput model prec. rec. IoU [ceil. floor wall win. chair bed sofa table tvs furn. objs. avg.
d SSCNet[24] 55.6 919 53.2 |58 81.8 19.6 54 129 344 26 13.6 6.1 94 7.4 20.2

SUNCG EdgeNet-EF(Ours) 61.9 80.0 53.6 | 9.1 92,9 183 5.7 15.8 40.4 30.7 9.2 3.3 13.7 11.6 22.8
d+e |EdgeNet-MF(Ours) | 60.7 80.3 52.8 |11.0 92.3 20.5 7.2 16.3 42.8 32.8 10.5 6.0 15.7 11.8 24.3
EdgeNet-LF(Ours) | 59.9 80.5 52.3 | 3.2 87.1 199 8.6 154 43.5 323 88 4.3 13.7 10.0 224

d SSCNet[24] 57.0 94.5 55.1 |15.1 94.7 244 0.0 12.6 32.1 35.0 13.0 7.8 27.1 10.1 24.7

NYU EdgeNet-EF(Ours) 78.1 65.1 55.1 (21.8 95.0 27.3 84 6.8 53.1 38.6 7.5 0.0 30.4 13.3 27.5
d+e |EdgeNet-MF(Ours)|76.0 68.3 56.1 |[17.9 94.0 27.8 2.1 9.5 51.8 443 94 3.6 325 12.7 27.8
EdgeNet-LF(Ours) | 75.5 67.5 55.4 [19.8 949 244 57 7.2 50.3 38.8 10.0 0.0 332 12.2 27.0

SSCNet[24] 59.3 929 56.6 |15.1 94.6 24.7 10.8 17.3 53.2 459 159 139 31.1 12.6 30.5

d DCRF[25] - - - |18.1 92.6 27.1 10.8 18.8 54.3 479 17.1 15.1 34.7 13.0 31.8
VVNetR-120[9] |69.8 83.1 61.1 [19.3 94.8 28.0 12.2 19.6 57.0 50.5 17.6 11.9 35.6 15.3 32.9

SUNCG d+c | Guedes etal.[7] - - 566 | - - - - - - - - - - - 30.5
. Garbade et al. *[6] [69.5 82.7 60.7 |12.9 92.5 25.3 20.1 16.1 56.3 43.4 17.2 104 33.0 14.3 31.0
NYU d+s SNetFuse[ 4] [67.6 85.9 60.7 [22.2 91.0 28.6 18.2 19.2 56.2 51.2 16.2 12.2 37.0 17.4 33.6
TNetFuse[14] [67.3 85.8 60.7 |17.3 92.1 28.0 16.6 19.3 57.5 53.8 17.7 18.5 38.4 18.9 344
dgeNet-EF(Ours) | 77.0 70.0 57.9 |16.3 95.0 27.9 14.2 17.9 55.4 50.8 16.5 6.8 37.3 15.3 32.1

d+e EdgeNet—MF(Ours) 79.1 66.6 56.7 [22.4 95.0 29.7 15.5 20.9 54.1 53.0 15.6 149 35.0 14.8 33.7
EdgeNet-LF(Ours) | 77.6 69.5 57.9 [20.6 94.9 20.5 9.8 18.1 56.2 50.5 11.4 5.2 359 15.3 31.6
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Our approach

* Input volume:
* 480 x 144 x 480 voxels
* Voxel size: 0.02m
* coverage: 9.6 x2.8x9.6m

e 8 partitions, emulating the field of view of a
standard RGB-D sensor

* The partitions are taken from the sensor
position, using a 45° step

* We move the point-of-view 1.7m back from
the original sensor position, to get more
overlapped coverage
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Our approach

* Each partition of the input is processed by
our CNN, generating 8 predicted volumes

* Overlapping areas are ensembled using
the sum rule

e Each predicted partition size is 60 x 36 x
60

* The resulting ensembled volume size is
120 x 36 x 120
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Results on Stanford 2D-3DS Dataset

evaluation del scene semantic scene completion (IoU, in percentages)
dataset ode coverage |ceil. floor wall win. chair bed sofa table tvs furn. objs. avg.
SSCNet 15.1 94.6 24.7 10.8 17.3 53.2 45.9 15.9 13.9 31.1 12.6 30.5
NYU v2 RGB-D | SGC partial |17.5 75.4 25.8 6.7 15.3 53.8 424 11.2 0.0 33.4 11.8 26.7
EdgeNet 23.6 95.0 28.6 12.6 13.1 57.7 51.1 164 9.6 37.5 134 32.6
Stanford 2D-3D-S| Owurs [full (360°){15.6 92.8 50.6 6.6 26.7 - 354 33.6 - 322 154 343




