

# Document classification using a Bi-LSTM to unclog Brazil's supreme court

F.A. Braz, N.C. Silva, <u>T.E. de Campos</u>, F.B. Chaves, M.H.P. Ferreira, A.P.G.S. Almeida, F.B. Vidal, P.H.G. Inazawa, V.H.D. Coelho, B.P. Sukiennik, D. Alves Bezerra, D.B. Gusmão, G.G. Ziegler, R.V.C. Fernandes, F. Hartmann Peixoto {Faculdade Gama, Departamento de Ciência da Computação, Faculdade de Direito} University of Brasília, Brazil

# Contribution

- Brazilian court system: the most clogged up judiciary system in the world.
- Thousands of lawsuit cases reach the supreme court every day.
- These cases need to be classified so that they can be allocated to the right team.
- First step: split cases into a set of labeled documents.
- VICTOR dataset (da Silva et al.,

# Data samples



# Experiments and results

- Our Bi-LSTM model takes inputs of 1000 tokens, which covers most of the contents of one page.
- We only need to run OCR on up to two pages per document.

#### 2018): 6,813 documents.



## Preprocessing workflow



- The dataset split was: 70% of the samples for training, 20% for validation and 10% for test.
- Result: 84% F<sub>1</sub> score with no pre-processing.





## Conclusions

• We proposed a tool to significantly speed up the first steps of the analysis of legal documents that reach Brazil's supreme court (STF).

## Dataset reference

da Silva, N. C. et al. (2018). Document type classification for brazil's supreme court using a convolutional neural network. In 10th International Conference on Forensic Computer Science and Cyber Law (ICoFCS), Sao Paulo, Brazil.



## Network architecture



- The task consists in classifying legal briefs into a set of 6 classes.
- For that we introduced a Bi-LSTM which processes the first 1000 tokens of the documents (first page).
- The model is strong enough to classify documents with an F<sub>1</sub> score of 84%, without using OCR on the remaining pages of the document.

Acknowledgments



**Contact:** teodecampos@unb.br https://cic.unb.br/~teodecampos/ViP/